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Beyond the Lamppost

Approaches to Answering the Questions of Interest

AS goes the story of the man found on his hands and
knees looking for his lost keys under the light of the

lamppost, scientists are often accused of using one model
system or another, not necessarily because it is the most ap-
propriate to answer the question of interest, but because it is
the easiest to use. This may be particularly true for the study
of pain in which, for example, hypersensitivity to punctate
mechanical stimuli is widely used as a measure of “neuro-
pathic pain” in preclinical models of peripheral neuropathy
because it is so robustly manifest in rodents despite the fact
this form of hypersensitivity is not a primary, or even second-
ary, positive sign of neuropathic pain in patients.1 So, given
that pain associated with tissue damage, the most common
source of pain, is generally due to neural activity initiated in
the peripheral terminals of nociceptive afferents, it is reason-
able to ask why one would want to study the cell body of the
primary afferent to learn anything about the mechanisms
underlying this neural activity. Gemes et al.2 described a
novel approach to study the cell body of primary afferents in
the intact ganglia. Importantly, however, they have not de-
veloped this approach to learn anything about afferent ter-
minals. Rather, they have described a powerful way to study
signaling at the afferent cell body.

The need to study signaling in the afferent somata is based
on an increasing body of evidence indicating that peripheral
terminals are not the only source of activity leading to affer-
ent input to the central nervous system. And although there
is evidence for the emergence of activity arising from sites
along an injured axon3 or even along the central processes,4

activity arising from within the sensory ganglia (dorsal and
trigeminal root ganglia) contributes significantly to the total
afferent input, particularly after traumatic nerve injury.5,6 In
fact, activity arising from within the sensory ganglia may be
the primary source of activity for some types of injury such as
those associated with disc compression.7,8 Sympathetic–pri-
mary afferent coupling was the original focus of this activity.9

However, subsequent data highlighted the contribution of
resident10 and recruited immune cells,11,12 the activation of
satellite cells,13,14 release of transmitter from within the gan-
glia,15 and even the emergence of mechanical and chemical

sensitivity.7,8 Cross-talk within the ganglia has been sug-
gested to contribute to both the emergence of pain outside an
area of injury16 and wind-up phenomena commonly associ-
ated with trigeminal neuralgia.17 Although activity in non-
nociceptive afferents is thought to contribute to paresthesias
and dysesthesias associated with nerve injury, activity in
nociceptive afferents may contribute to ongoing pain.
From a therapeutic perspective, minimally all this activity
arising from within the ganglia may contribute to the
difficulty in obtaining complete pain relief with a periph-
eral nerve block, particularly in the case of nerve injury.

Gemes et al. described a way to record simultaneously
electrical activity and Ca2� transients in sensory neuron so-
mata in the intact ganglia. Even better, with spinal and pe-
ripheral nerves left intact as well, the authors were able to
assess the effect of neural activity (i.e., propagated action
potential) on signaling within the ganglia. The ability to
monitor Ca2� will be a critical feature here, particularly in
the context of cross-talk within the ganglia because of the
importance of Ca2� to transmitter release and the actions of
so many receptor-mediated processes. Thus, the authors have
described an approach that can be used to begin teasing apart
the growing array of processes that may contribute to the
emergence of activity from within the sensory ganglia.

The authors used their intact preparation to describe sev-
eral phenomena, such as differences between C- and
A�-fibers with respect to the magnitude of evoked Ca2�

transients and the effect of nerve injury on the magnitude of
evoked Ca2� transients in C-fibers that were largely consis-
tent with results previously obtained in dissociated neu-
rons.18,19 However, more interesting and potentially more
important is their observation that the Ca2� transient in each
neuron is determined by a distinct pattern of activity. Al-
though action potential frequency was the only parameter
manipulated, frequency was sufficient to differentiate neu-
rons based on the level of activity associated with a maximal
increase in intracellular Ca2� (i.e., at some point, that varied
between neurons, higher frequencies of stimulation resulted
in no greater, and in some cases, a decrease in the magnitude
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of the Ca2� transient). In the context of previous data indi-
cating that (1) afferent activity alone is sufficient to drive
changes in gene expression20 and (2) the pattern of activity
can determine the pattern of gene expression,21 the activity-
dependent tuning described in this study has several impor-
tant implications. First, it increases the possibility, as sug-
gested, that the pattern (i.e., doublets or short bursts) of
activity may be even more critical for the “tuning” of the
Ca2� transient than frequency alone. This possibility begs
for a more detailed parametric analysis of the activity–Ca2�

transient relationship in this intact preparation. Second, it
opens a whole new avenue for investigation into the differ-
ential regulation of gene expression in specific subpopula-
tions of afferents. This issue may be particularly important in
light of evidence that specific subpopulations such as the
“mechanically insensitive afferent,” may play a particularly
important role in chronic pain.22 Third, the “pattern tuning”
of afferents increases the intriguing possibility that it may be
possible to manipulate the time course of a pain syndrome by
manipulating the pattern of activity; that is, if the mainte-
nance of a chronic pain syndrome is dependent on a partic-
ular pattern of gene expression which in turn is dependent on
a particular pattern of activity, it may be possible to suppress
the “problematic” pattern of gene expression with the appro-
priate pattern of activity. In some populations of afferents, an
increase in activity may ultimately have the most beneficial
long-term consequences (possibly accounting for some of the
therapeutic efficacy of electroacupuncture). Minimally, dis-
rupting activity-dependent patterns of gene expression may
also explain the long-term effect of a peripheral nerve block
that often far outlasts the duration of the block.23

Although Gemes et al. developed a powerful approach to
the study processes in the intact ganglion and went on to
highlight some of the limitations to the dissociated neuron,
the authors correctly point out that as much as 99.8% of the
volume of a primary afferent neuron is outside the soma.24

And while signaling within the ganglia is appropriately an
area of active investigation because, as noted earlier, the vast
majority of pain we experience is due to activity that arises
from sites outside the ganglia, it is still important to under-
stand mechanisms underlying the sensitization and activa-
tion of nociceptive afferent terminals. The intact prepara-
tion, because it is intact, precludes the study of many of these
processes, simply because they do not normally occur within
the intact ganglia. The observation that nerve injury results
in emergence of mechanical and thermal sensitivity at cut
ends of the injured fibers25–27 is evidence that molecules
necessary for the sensitization and activation of nociceptive
afferents are trafficked out of the ganglia. Furthermore, it is
possible to take advantage of this fact by studying the cell
body of acutely dissociated sensory neurons because dissoci-
ated neurons become responsive to the same stimuli capable
of activating and sensitization afferent terminals in vivo, in-
cluding mechanical,28 thermal (both heat29 and cooling30),
and a wide array of chemical stimuli.31 Thus, although
studying the intact terminal would still be an ideal place to

learn about pain arising from the periphery given unique
anatomical constraints in association with unique distribu-
tion of ion channels32 and other proteins and cellular struc-
tures, the dissociated cell body provides a unique window for
these events.

What remains true in any scientific endeavor is that one
should use the most appropriate tools available to answer the
question of interest. Thanks to the work of Gemes et al., we
now have a powerful new tool to understand the neurobiol-
ogy of primary afferents, in particular the effect of signaling
within the ganglia. With luck, and the continued application
of all the tools available, novel and more effective approaches
for the treatment of pain may soon be at hand.

Michael S. Gold, Ph.D., Departments of Anesthesiology
and the Pittsburgh Center for Pain Research, University of
Pittsburgh, Pittsburgh, Pennsylvania. msg22@pitt.edu.
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