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ABSTRACT
Background: Hypercapnic acidosis frequently occurs when
patients with acute lung injury are initially ventilated with
low tidal volume “protective” strategies. Hypercapnic acido-
sis per se, in the absence of any change in tidal volume or
airway pressure, is protective when instituted before the
onset of injury. However, the mechanisms by which hy-
percapnic acidosis confers this protection are incompletely
understood, in particular, the effects on pulmonary oxidative
reactions, which are potent mediators of tissue damage, have
not been previously examined in vivo.
Methods: After anesthesia, tracheostomy, and the intratra-
cheal instillation of endotoxin to establish lung injury, rats
were mechanically ventilated for 6 h in normocapnia (21%
O2, 0% CO2). Rats were then randomized to either normo-

capnic (21% O2, 0% CO2) or hypercapnic (21% O2, 5%
CO2) ventilation and a nonspecific nitric oxide synthase
inhibitor (NG-monomethyl-L-arginine) or vehicle. Dihy-
drorhodamine was administered intravenously, and the
lungs were removed for determination of the oxidative for-
mation of rhodamine by spectrofluorimetry after 20 min.
Thus, rats were randomly assigned to either: normocapnia-
endotoxin (n � 12), normocapnia-endotoxin-NG-monometh-
yl-L-arginine (n � 9), hypercapnia-endotoxin (n � 11), or hy-
percapnia-endotoxin-NG-monomethyl-L-arginine (n � 10).
Results: Hypercapnic acidosis significantly reduced the pul-
monary oxidative reactions in the inflamed lung compared
with normocapnia. Nitric oxide synthase blockade did not
alter endotoxin-induced oxidative reactions.
Conclusions: Hypercapnic acidosis reduced oxidative re-
actions in the acutely injured lung in vivo, within minutes
of onset and was not reliant on nitric oxide-dependent
peroxynitrite production. This rapid onset antioxidant ac-
tion is a previously undescribed mechanism by which hy-
percapnic acidosis could act, even when acute lung injury
is well established.

THE use of “protective” ventilator strategies that limit
tidal volume and airway pressure have produced the first

real improvements in survival in acute respiratory distress
syndrome (ARDS) and acute lung injury (ALI)1–3 and have
encouraged an increasingly tolerant clinical approach to hy-
percapnia. It has since been demonstrated that hypercapnic
acidosis (HCA) per se can confer protection against experi-
mental lung injury in vivo after ischemia–reperfusion,4 en-

* Associate Professor, School of Medicine and Medical Sciences,
Conway Institute, University College Dublin, Dublin, Ireland. Cur-
rent address: Australian and New Zealand Intensive Care-Research
Centre, School of Public Health and Preventive Medicine, Monash
University, Melbourne, Australia. † Consultant Anesthesiologist,
School of Medicine and Medical Sciences, Conway Institute, Uni-
versity College Dublin. Current address: Department of Anaesthesia,
Mercy University Hospital, Cork, Ireland. # Consultant Anesthesiol-
ogist, � Professor, School of Medicine and Medical Sciences, Con-
way Institute, University College Dublin, Dublin, Ireland. § Consul-
tant Anesthesiologist, Department of Anaesthesia, St. Vincent’s
University Hospital, Dublin, Ireland. ‡ Lecturer, School of Biological
Sciences, Dublin Institute of Technology, Dublin, Ireland.

Received from the School of Medicine and Medical Sciences,
Conway Institute, University College Dublin, Dublin, Ireland. Sub-
mitted for publication September 29, 2009. Accepted for publication
March 2, 2010. Supported by grants from the Intensive Care Society
of Ireland (Dublin, Ireland), the College of Anaesthetists Ireland
through its Abbott scholarship (Dublin, Ireland), Programme for
Research in Third Level Institutes, Health Research Board Ireland
(Dublin, Ireland), and an Embark Initiative award from the Irish
Research Council for Science, Engineering and Technology (Dublin,
Ireland; grant number: 145 2004). Some of this work was presented
in abstract form at the American Thoracic Society International Confer-
ence, May 18–22, 2007, San Francisco, California.

Address correspondence to Dr. McLoughlin: University College
Dublin, School of Medicine and Medical Sciences, Conway Institute,
Dublin 4, Ireland. paul.mcloughlin@ucd.ie. Information on purchas-
ing reprints may be found at www.anesthesiology.org or on the
masthead page at the beginning of this issue. ANESTHESIOLOGY’s
articles are made freely accessible to all readers, for personal use
only, 6 months from the cover date of the issue.

What We Already Know about This Topic

❖ Low tidal volume ventilation, commonly used in patients with
acute lung injury, results in hypercapnic acidosis

❖ Hypercapnic acidosis itself protects against lung injury by un-
known mechanisms

What This Article Tells Us That Is New

❖ In rats with acute lung injury by endotoxin instillation, hyper-
capnic ventilation rapidly reduced oxidative reactions in the
lung by a mechanism that did not involve nitric oxide
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dotoxin-induced5 and ventilation-induced injury,5–7 inde-
pendent of changes in tidal volume. Furthermore, a recent
retrospective multivariate analysis demonstrating an in-
creased survival advantage in patients in the ARDSnet8 study
randomized to high tidal volume ventilation who were ini-
tially hypercapnic and acidotic,9 suggesting that the benefi-
cial effects of HCA also occur in human ALI. However, the
mechanisms by which HCA exerts its potent antiinflamma-
tory properties in in vivo models4,5,10–13 have yet to be fully
elucidated.

In ALI, the production of oxidant species and the resultant
oxidative reactions are central to the damaging inflammatory
processes.14–17 In particular, peroxynitrite formed by the com-
bination of superoxide and nitric oxide17,18 is an important
oxidant that is responsible for inducing extensive damage to
DNA, proteins, and lipid membranes.14,19,20 Furthermore, per-
oxynitrite can also cause tissue damage and impair normal en-
zymatic function though protein nitration reactions.21–23

There is increasing speculation that an HCA-mediated re-
duction in oxidation may be responsible for the demonstrated
protective effects in lung injury.24 In support of this assertion,
some reports of in vitro work have shown that hypercapnia can
inhibit the oxidative reactions of peroxynitrite.19,20 HCA has
been shown to reduce proinflammatory cytokine concentra-
tions, inhibit pulmonary neutrophil recruitment, and
ameliorate tissue-damaging oxidative reactions.5,10,25,26

These antiinflammatory effects were accompanied by a re-
duction in the accumulation of isoprostanes, a stable end
product of oxidative reactions in the tissues.

However, the mechanisms by which HCA exerts protec-
tive effects remain unclear. In all of these injury models,
HCA was induced before, or shortly after, the onset of injury
and was present throughout the period in which lung injury
developed. Thus, it is currently not possible to discriminate
between two possible mechanisms by which HCA might
exert the observed antioxidant and tissue-protecting effects.
First, HCA might act predominantly to inhibit neutrophil
recruitment and activation of endogenous inflammatory path-
ways in the lung, thus preventing oxidant generation within the
tissue. In this case, the previously demonstrated reduction in the
oxidative production of isoprostanes in the lung tissue would
simply be a marker of reduced lung injury and would not dem-
onstrate the mechanism by which HCA acted (i.e., less injury
therefore less oxidation). Alternatively, HCA might act by a
direct inhibitory effect on the damaging reactions caused by
these oxidants after they have been produced, which would in-
dicate an important mechanism through which HCA protected
the lung from inflammatory damage.

This distinction is important as the former mechanism
would only be protective in a circumstance in which HCA
was instituted prophylactically before the onset of injury.
However, if the latter mechanism operated (i.e., HCA acted
to inhibit oxidative reactions directly) then HCA could rap-
idly and effectively inhibit further progression of lung injury
in the setting of ongoing, previously established inflamma-
tion and thus show that HCA could act therapeutically. The

acute effects of HCA on oxidative reactions in vivo in ALI
have not previously been directly examined.

Therefore, we undertook a series of in vivo experiments to
examine the hypothesis that HCA rapidly inhibits oxidative
reactions in established lung injury. In some experiments, we
used nitric oxide synthase inhibitors to prevent nitric oxide-
dependent production of peroxynitrite27,28 and thus investi-
gated the effects of HCA on oxidative reactions that are both
dependent on and independent of peroxynitrite in a model of
endotoxin-induced lung injury.

Materials and Methods

All experiments used specific pathogen-free adult male Spra-
gue–Dawley rats, were approved by an internal university
ethics committee (University College Dublin, Dublin, Ire-
land), and were conducted under government license.

Overview of the Experimental Design
After anesthesia and surgery, all of the rats received intratra-
cheal endotoxin and 6 h of normocapnic ventilation (21%
O2, 0% CO2) before randomization to 20 min of normocap-
nic (21% O2, 0% CO2) or hypercapnic ventilation (21% O2,
5% CO2). All groups received the oxidative probe dihydro-
rhodamine intravenously and 20 min later were killed by
exsanguination, and the lungs were removed, homogenized,
and stored for later analysis of rhodamine content. Some rats
in each condition (normocapnia and HCA) received a non-
specific nitric oxide synthase inhibitor (NG-monomethyl-L-
arginine [L-NMMA]) 6 h after the inoculation of endotoxin.
Thus, all rats were randomly assigned (using a random number
generator) to one of the four separate experimental groups as
follows: normocapnia-endotoxin-vehicle (n � 12), normocap-
nia-endotoxin-L–NMMA (n � 9), HCA-endotoxin-vehicle
(n � 11) and normocapnia-endotoxin-vehicle, normocapnia-
endotoxin-L–NMMA, HCA-endotoxin-L–NMMA (n � 10).

To assess nitrotyrosine formation in the lungs, rats (n � 4)
were inoculated with endotoxin or vehicle (n � 5) under
anesthesia and killed after 6 h of normocapnic ventilation.
Nitrotyrosine concentrations in lung homogenates were de-
termined by enzyme-linked immunosorbent assay, and the
number of cells containing high levels of nitrotyrosine within
each lung was determined by immunostaining and counting
using the stereological dissector technique, as previously
described.29,30

Experimental Technique
Many of the techniques used have been described in detail in
previous publications,5,27,28,31,32 and these can be divided into
(1) anesthesia, surgery, and mechanical ventilation, (2) endo-
toxin instillation, (3) the intravenous administration of oxida-
tive probes, (4) analysis of bronchoalveolar lavage fluid and lung
tissue homogenization, (5) fluorometric examination of sam-
ples, and (6) assessment of pulmonary nitrotyrosine.
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Anesthesia, Surgery, and Mechanical Ventilation
In brief, anesthesia was induced with intraperitoneal pento-
barbitone sodium (60 mg/kg). After confirming depth of
anesthesia by absence of hemodynamic response to paw com-
pression, the dorsal penile vein and carotid artery were can-
nulated. A tracheotomy was performed, and an endotracheal
was tube inserted. Pancuronium (1 mg) was administered
intravenously, and the lungs were then ventilated using a
small animal ventilator (Model 683; Harvard Apparatus,
Holliston, MA) with respiratory rate of 90 min�1, tidal vol-
ume of 4.5 ml/kg, and positive end-expiratory pressure of 2.5
cm H2O. The respiratory rate was then adjusted to produce
a PaCO2 of 35–45 mmHg and fixed at this rate for the re-
mainder of the experiment. These ventilation settings were
used as they maintained normal PaO2, PaCO2, and pH values
in control (uninjured) rats.5,32,33 A recruitment maneuver
consisting of a positive end-expiratory pressure of 15 cm
H2O for 20 breaths was carried out after the initiation of
ventilation and every 15 min thereafter throughout the pro-
tocol. Anesthesia was maintained with an intravenous infu-
sion of alfaxalone/alfadolone acetate (5–20 mg � kg�1 � h�1).
Depth of anesthesia was assessed regularly by monitoring the
cardiovascular response to paw clamp. Body temperature was
maintained using a thermostatically controlled blanket sys-
tem (Harvard Apparatus) and confirmed with an indwelling
rectal temperature probe. For the first 6 h of the protocol, the
rats were ventilated with a gas mix of 30% O2 and 0% CO2

(balance nitrogen). Systemic arterial pressure and tempera-
ture were measured continuously. Arterial blood samples
were drawn hourly throughout and at the end of the period
of ventilation. Static compliance was also determined.5,32,33

After 6 h of mechanical ventilation, rats in the endotoxin
groups were randomized to receive either normocapnic or
hypercapnic ventilation for a further 20 min period before
killing and sample collection.

Endotoxin-induced Lung Injury Protocol
Escherichia coli endotoxin in phosphate-buffered saline (0.3
ml) was inoculated intratracheally to induce pulmonary in-
jury, as previously described.5 The control group received
intratracheal phosphate-buffered saline alone (0.3 ml).

Preparation and Administration of Dihydrorhodamine
and L-NMMA
Dihydrorhodamine was used as a probe to assess oxidation in
the endotoxin-injured lung because it detects oxidation
through two major pathways that cause oxidative tissue dam-
age in the inflamed lung.15–21,23,34–36 (1) Dihydrorhodam-
ine is oxidized by peroxynitrite to the highly fluorescent
product rhodamine in vitro,37,38 and (2) dihydrorhodamine
is also oxidized to rhodamine by hydrogen peroxide in the
presence of myeloperoxidase.37,38 Dihydrorhodamine is not
directly oxidized by superoxide radical or hydrogen peroxide
in the absence of peroxidase enzymes.38 Although the li-
pophilic dihydrorhodamine may enter the intracellular com-
partment, the oxidized cationic rhodamine is effectively

trapped and retained intracellularly.39 Thus, the concentra-
tion of rhodamine retained in the tissue is an index of oxida-
tion through these two important pathways. The nitric oxide
synthase inhibitor L-NMMA was used to block peroxynitrite
production and thus determines the separate contributions
of the peroxynitrite-dependent and myeloperoxidase-depen-
dent oxidant pathways.

After randomization to normocapnic or hypercapnic ven-
tilation, rats received dihydrorhodamine (1 mmol/kg�1) to
assess oxidation in vivo.27,28 Dihydrorhodamine was dis-
solved in ethanol and further diluted in normal saline before
intravenous administration in a volume up to 1.0 ml. In
addition, some rats received an intravenous dose of a non-
specific nitric oxide synthase inhibitor (L-NMMA, 60 mg/
kg) to block in vivo nitric oxide formation.28 In a series of
pilot experiments, we examined the effect of incrementing
doses of L-NMMA (3.0–120.0 mg/kg) on arterial blood
pressure, an index of the vasodilator effects of nitric oxide
production in the tissues. In agreement with previous work,
we found that a dose of 60 mg/kg L-NMMA produced a
maximal increase (n � 3, data not shown).40,41

Analysis of Bronchoalveolar Lavage Fluid and Lung
Tissue Homogenization
Twenty minutes after dihydrorhodamine administration, hep-
arin (300 U/kg) was administered intravenously, and the rats
were exsanguinated. Immediately post mortem, bronchoalveo-
lar lavage fluid was collected and differential cell counts deter-
mined. The lung tissuewashomogenized inethanol (4mlethanol/
mg lung tissue); the homogenate was cleared by centrifugation
(4°C) and the supernatant stored frozen (�80°C).

Fluorometric Examination of Samples
Lung tissue was homogenized in ethanol to extract the rhoda-
mine associated with plasma membranes and intracellular or-
ganelles. Each milligram of lung tissue was homogenized in 4 �l
ethanol, centrifuged at 2,000 g for 20 min at 4°C, and snap
frozen at �80°C. The formation of lung tissue homogenate
supernatant rhodamine was the principal measure of oxidative
pulmonary reactions in this series of experiments. After collec-
tion and preparation of the homogenate samples, the fluores-
cence of rhodamine was measured (Hitachi F2500 Spectrofluo-
rimeter, Tokyo, Japan) using excitation and emission
wavelengths of 500 and 536 nm, respectively. The concentra-
tion of rhodamine formed in vivo was quantified using a stan-
dard curve generated with rhodamine prepared at known con-
centrations in the supernatant of lung homogenate from
untreated rats.

Assessment of Pulmonary Nitrotyrosine
Rats (n � 4) were inoculated with endotoxin under anesthesia
and killed after 6 h of normocapnic ventilation and compared
with a group of control uninjured rats (n � 5) that did not
receive endotoxin. The lungs were removed immediately post
mortem, the right hilum tied, the right lung separated, homog-
enized, centrifuged, and the supernatant stored (�80°C) for
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later analysis of nitrotyrosine by enzyme-linked immunosorbent
assay (Cayman Chemical Co., Ann Arbor, MI). The left lung
was inflated by intratracheal instillation of optimal cutting tem-
perature embedding compound (Lennox Lab Supplies, Dublin,
Ireland) and flash frozen. Subsequently, the left lung was cut
into 4.0-mm horizontal slices beginning at a random start point
within 4.0 mm of the lung apex. Complete transverse sections
were cut from the resultant tissue blocks, the area of each deter-
mined by point counting and used to determine volume of the
lung by the Cavalieri method. Further sections from the left
lungs were immunostained using an antinitrotyrosine antibody
(dilution 1/100) together with a secondary antibody labeled
with the fluorphore fluorescein isothiocyanate. The number of
cells intensely stained for nitrotyrosine in each lung was quantified
using the double disector, as previously described. For the disector

analysis, random pairs of serial sections separated by 7 �m were
obtained by optical sectioning using confocal microscopy.

Statistical Analysis
Data are presented as means � SEM. We used a two-factor
ANOVA to test for statistically significant effects of hyper-
cpanic acidosis and L-NMMA in response to endotoxin in-
oculation and to seek interactions between these. For those
data measured before and after endotoxin-inoculation (tables
1 and 2), we used a two-factor ANOVA with repeated mea-
sures followed by Holm–Sidak step-down correction of two-
tailed t test to examine post hoc for statistically significant
differences between specific mean values when indicated.
Statistical analysis was undertaken using SPSS 16.0 for Mac

Table 1. Physiologic Indices of Lung Damage before and 6 h after Intratracheal Endotoxin Inoculation

Variable
Normocapnia Endotoxin

Vehicle (n � 12)
HCA Endotoxin
Vehicle (n � 11)

Normocapnia Endotoxin
L-NMMA (n � 9)

HCA Endotoxin
L-NMMA (n � 10)

Paw (mmHg)
Preinoculation 6.15 (0.21) 6.18 (0.21) 6.26 (0.28) 6.29 (0.19)
6 h post 7.96 (0.29)* 7.60 (0.36)* 7.51 (0.26)* 7.95 (0.31)*

Cs (ml/mmHg)
Preinoculation 1.07 (0.07) 1.06 (0.05) 1.12 (0.08) 1.08 (0.05)
6 h post 0.68 (0.08)* 0.55 (0.07)* 0.69 (0.10)* 0.68 (0.08)*

PaO2 (mmHg)
Preinoculation 146 (0.42) 149 (2.9) 146 (4.2) 144 (2.1)
6 h post 89 (5.5)* 108 (6.1)* 106 (4.6)* 92 (5.5)*

Data are expressed as mean (SEM).
* Significantly different from preinoculation value (P � 0.05, 2-way analysis of variance with Sidak t test).
6 h post � values 6 h after endotoxin inoculation; Cs � static lung compliance; HCA � hypercapnic acidosis; L-NMMA �
NG-monomethyl-L-arginine; Pao2 � arterial partial pressure of oxygen; Paw � peak airway pressure; Preinoculation � values before
intratracheal inoculation of endotoxin.

Table 2. Acid–Base Status before and during Measurement of Oxidative Reactions

Variable
Normocapnia Endotoxin

Vehicle (n � 12)
HCA Endotoxin
Vehicle (n � 11)

Normocapnia Endotoxin
L-NMMA (n � 9)

HCA Endotoxin
L-NMMA (n � 10)

PaCO2 (mmHg)
Preinoculation 37.9 (1.0) 37.0 (0.8) 36.4 (1.6) 36.9 (0.8)
6 h post 38.5 (1.8) 40.4 (1.8) 40.5 (1.2) 42.4 (2.9)
Final 40.7 (2.8) 66.0 (2.6) 42.9 (2.0) 71.4 (2.4)

pH
Preinoculation 7.39 (0.01) 7.42 (.01) 7.41 (0.02) 7.41 (0.01)
6 h post 7.29 (0.02)* 7.30 (0.03)* 7.30 (0.02)* 7.31 (0.02)*
Final 7.27 (0.02) 7.14 (0.03) 7.28 (0.03) 7.15 (0.01)

HCO3
� (mmol/l)

Preinoculation 22.8 (0.8) 23.2 (0.5) 22.4 (0.7) 22.9 (0.5)
6 h post 18.0 (0.9) 19.7 (1.4) 19.7 (1.2) 21.2 (1.1)
Final 18.7 (1.5) 22.4 (1.4) 19.8 (1.4) 23.9 (0.5)

BE (mmol/l)
Preinoculation �2.4 (0.6) �1.5 (0.4) �1.9 (0.7) �1.8 (0.4)
6 h post �8.0 (1.0)* �6.5 (1.7)* �6.3 (1.4)* �4.8 (1.0)*
Final �7.8 (1.6) �7.8 (1.8) �6.8 (1.6) �6.0 (0.7)

Data are expressed as mean (SEM).
* Significantly different from preinoculation value (P � 0.01, two-way analysis of variance with Sidak t test).
6 h post � values 6 h after endotoxin inoculation; BE � base excess; final � values during the final 20 min of the protocol when
dihydrorhodamine oxidation was assessed; HCA � hypercapnic acidosis; HCO3

� � bicarbonate; L-NMMA � NG-monomethyl-L-arginine;
PaCO2 � arterial partial pressure of carbon dioxide; Preinoculation � values before intratracheal inoculation of endotoxin.
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(SPSS Inc., Chicago, IL). A value of P less than 0.05 was
considered statistically significant.

Results

Physiologic Indices of Damage
There were no differences between the groups at baseline in
any indices of lung function (table 1). In all groups, peak
airway pressure had increased significantly and static compli-
ance reduced 6 h after the intratracheal instillation of endo-
toxin. These indices were not significantly different between
the four groups immediately before the administration of
dihydrorhodamine to measure oxidation (table 1). PaO2 de-
clined significantly in all groups after endotoxin administra-
tion from the values determined before inoculation although
there were no significant differences between the groups at
that time (table 1). In a separate series of control experiments,
in which rats were similarly ventilated but did not receive
intratracheal endotoxin, there were no significant differ-
ences in these indices from the beginning to the end of a 6-h
period of ventilation (data not shown). Taken together these
data demonstrated that intratracheal endotoxin caused sig-
nificant lung injury. In addition, analysis demonstrated that
all endotoxin groups showed similar values after 6-h mechan-
ical ventilation, demonstrating that an equal degree of lung
injury had been established before randomization to one of
the four experimental groups: normocapnia-vehicle, normo-
capnia-L-NMMA, HCA-vehicle, or HCA-L-NMMA.

PCO2 and Acid–Base Status
There were no significant differences between the groups in
PaCO2 or pH bicarbonate, or base excess at baseline (table 2).
All groups developed metabolic acidosis after endotoxin in-
jury (table 2). In a separate series of control experiments in
which rats were similarly ventilated but did not receive intra-
tracheal endotoxin, there were no significant differences in
these indices from the beginning to the end of the 6-h period
of ventilation (data not shown). Again, analysis demon-
strated that there were no significant differences between the
four groups that received endotoxin in any of the indices after
the 6-h period of ventilation before randomization, demonstrat-
ing that endotoxin inoculation had caused similar disturbance
of acid–base status in all groups (table 2) before randomization.
As intended, addition of carbon dioxide (5%) to the inspirate
(HCA) during the past 20 min of the protocol, when oxidation
was being assessed with dihydrorhodamine, caused an increase
in PaCO2 and a further decline in pH in the two groups that
received this treatment (table 2).

Pulmonary Inflammation
The end protocol bronchoalveolar lavage neutrophil counts
were not significantly different between groups (fig. 1) al-
though they were significantly elevated above the value ob-
served in a group of similarly ventilated rats that did not
receive endotoxin (fig. 1).

Lung Homogenate Supernatant Rhodamine Formation
Figure 2 shows the concentrations of rhodamine measured in
the bronchoalveolar lavage fluid at the end of the protocol.
HCA significantly reduced rhodamine compared with nor-
mocapnic values both in animals that received L-NMMA and
those that received vehicle (P � 0.01). Groups that received
L-NMMA were not significantly different from those that
did not receive it; there was no significant interaction be-
tween carbon dioxide and L-NMMA. The concentrations in
the normocapnic rats were significantly increased above
those measured in a control group of similarly ventilated
uninjured rats that did not receive intratracheal endotoxin

Fig. 1. Graph representing mean (SEM) neutrophil concen-
tration measured in bronchoalveolar lavage fluid in control
(no intratracheal endotoxin) and endotoxin-injured lungs.
There were no statistically significant differences between the
four endotoxin groups at the time when oxidative reactions
were assessed. The four endotoxin groups were normocap-
nia endotoxin-vehicle (n � 12), HCA endotoxin-vehicle (n �
11), normocapnia endotoxin-L-NMMA (n � 9), and HCA en-
dotoxin-L-NMMA (n � 10), and the nonendotoxin control
group was normocapnia control (n � 8). Control � phos-
phate-buffered saline (intratracheal); HCA � hypercapnic ac-
idosis; L-NMMA � NG-monomethyl-L-arginine and vehicle
which refers to intravenous normal saline (diluent for
L-NMMA); Normo � normocapnia.

Fig. 2. Graph representing mean (SEM) rhodamine concen-
tration measured in lung homogenate supernatant in control
(no intratracheal endotoxin) and endotoxin-injured lungs. The
four endotoxin groups were normocapnia endotoxin-vehicle
(n � 12), HCA endotoxin-vehicle (n � 11), normocapnia en-
dotoxin-L-NMMA (n � 9), and HCA endotoxin-L-NMMA (n �
10), and the nonendotoxin control group was normocapnia-
control (n � 8). There was no significant effect of nitric oxide
synthase inhibition (L-NMMA) on rhodamine production either
in normocapnia or hypercapnia. Hypercapnic acidosis signif-
icantly reduced rhodamine production compared with nor-
mocapnia. * Statistically significant reduction in rhodamine in
hypercapnic acidosis (P � 0.01, 2-way analysis of variance).
Control � phosphate-buffered saline (intratracheal); HCA �
hypercapnic acidosis; L-NMMA; NG-monomethyl-L-argi-
nine and vehicle which refers to intravenous normal saline
(diluent for L-NMMA); Normo � normocapnia.
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(fig. 2) and had no evidence of lung injury, thus confirming
that endotoxin-induced lung injury caused a marked in-
creased in oxidative reactions within the lung.

Nitrotyrosine in Endotoxin-treated Lungs
Mean nitrotyrosine concentration in lung homogenate from
endotoxin-inoculated rats was 25.0 (�5.6) ng/ml, which was
significantly (P � 0.05) greater than that in noninoculated
animals (16.2 � 1.3 ng/ml). In endotoxin-inoculated lungs,
the alveolar walls were stained extensively for nitrotyrosine.
In addition to widespread staining throughout the lung tis-
sue, more intensely staining cells could also be identified
scattered throughout the parenchyma in a patchy distribu-

tion (fig. 3A). In contrast, regions containing numerous in-
tensely stained cells were not seen in the control lungs al-
though occasional heavily nitrotyrosine stained cells were
found (fig. 3B). The mean number of intensely stained cells
per left lung was significantly (P � 0.05) greater after endo-
toxin inoculation (7.4 � 0.5 � 107 per left lung) than that in
control group (3.6 � 0.9 � 107 per left lung).

Discussion

The results of these experiments demonstrate that endotoxin-
induced injury leads to increased oxidant and nitration reac-
tions in the lung in vivo. HCA can acutely reduce pulmonary
oxidative reactions within minutes of onset even when pul-
monary inflammation is well established, implying that it
can exert a therapeutic effect. Nitric oxide-dependent pro-
duction of peroxynitrite is not required for these oxidative
reactions, suggesting that peroxynitrite is not an essential
mediator of oxidant-mediated damage in the acutely injured
lung. Furthermore, HCA exerted its antioxidant effects in-
dependent of peroxynitrite.

Endotoxin-induced Lung Injury Model
The intratracheal instillation of endotoxin produced marked
lung injury during the 6-h period of mechanical ventilation.
This is demonstrated by the significant changes in physio-
logic indices of lung function (reduced compliance, in-
creased peak airway pressure, and reduced PaO2) and the
increase in bronchoalveolar lavage fluid neutrophil count
(table 1 and fig. 1). These findings demonstrate that pulmo-
nary inflammation and ALI were well established and iden-
tical in all endotoxin groups before randomization to HCA
or normocapnia for 20 min (table 1). This was an important
aspect of our experimental design as it allowed us to compare
the acute effects of HCA on oxidative reactions with those of
normocapnia in the presence of identical degrees of estab-
lished injury and similar pulmonary burdens of activated
neutrophils (fig. 1).

A second important aspect of the experimental design
was that dihydrorhodamine was administered after the
pulmonary injury had been established and immediately
after the entry into normocapnic or hypercapnic condi-
tions. This meant that the production of rhodamine re-
flected the immediate effect of HCA on oxidative reac-
tions during a brief period of time (20 min) and was
unaffected by any reactions occurring during the period
when inflammation was developing. This is distinctly dif-
ferent from previous studies in which isoprostane forma-
tion (a stable end product of oxidative reactions in cells42)
has been used as an index of oxidation in the lung during
extended periods of HCA.4,10,25 As a result, isoprostane
formation in those experiments reflected the cumulative
effects of HCA on oxidative reactions during the period of
time from the initiation of the injury until the lungs were
removed and thus did not measure the immediate effects
of hypercapnia on oxidative reactions.42

Fig. 3. Confocal images of sections from endotoxin-inocu-
lated and control lungs stained immunofluorescently for ni-
trotyrosine. A shows multiple cells intensely stained for nitro-
tyrosine after endotoxin inoculation. B shows occasional
nitrotyrosine-positive cells observed in control lung. Scale
bars represent 40 �m.
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The Effects of HCA on Oxidative Reactions in the Injured
Lung
Figure 4 illustrates oxidant reactions that are activated under
inflammatory conditions that are important in the microbi-
cidal activity of phagocytic cells but can also have cytotoxic
and tissue-damaging actions. Peroxynitrite is a potent oxi-
dant produced in inflammatory conditions through the re-
action of nitric oxide and superoxide radical. It has been
suggested that peroxynitrite is an important factor con-
tributing to lung damage in ALI.14 –17 The formation of
peroxynitrite can be prevented in vivo by the use of nitric
oxide synthase inhibitors that block the formation of ni-
tric oxide.28,40,41

To examine the potential effect of HCA on this oxidant
pathway, we used the probe dihydrorhodamine which, in the
presence of peroxynitrite, is oxidized to the fluorescent com-
pound rhodamine.27,28,37 The rhodamine thus formed is
trapped intracellularly and provides an index of oxidant re-
actions.39,43 The endotoxin-induced lung damage and in-
flammation in normocapnic conditions (table 1, fig. 1) were
accompanied by an increase in concentration of rhodamine
in lung tissue compared with the normocapnic control, dem-

onstrating an increased rate of oxidation (fig. 2). Further-
more, HCA caused a significant and rapid reduction in rho-
damine production in the lung demonstrating for the first
time that HCA reduced pulmonary oxidative reactions in
vivo in the already injured lung (fig. 2). These results show
that HCA acted effectively during a matter of minutes to
reduce pulmonary oxidation.

Nitric oxide synthase inhibition did not have any signifi-
cant effect on the rate of rhodamine formation (fig. 2), sug-
gesting that nitric oxide production is not essential for the
oxidation of dihydrorhodamine in endotoxin-injured lungs.
Moreover, there was no significant interaction between L-
NMMA treatment and the level of carbon dioxide, showing
that HCA was able to reduce oxidation even in the absence of
continuing peroxynitite production. Thus, the antioxidant
action of HCA was independent of peroxynitrite production
in this model.

It is important to note that while oxidation of dihydro-
rhodamine to rhodamine can be used to detect peroxynitrite,
this is not the only oxidant reaction to which this probe is
sensitive. Superoxide radical is dismutated by superoxidase
dismutase to form hydrogen peroxide, which can in turn lead

Fig. 4. Schematic diagram representing the possible effects of hypercapnia on oxidation and nitration in vivo. This diagram is
a schematic representation of well-established oxidant pathways previously shown in vitro to be inhibited by hypercapnic
acidosis. The diagram outlines both the classic peroxynitrite-dependent nitration and oxidation pathway and the myeloper-
poxidase dependent alternative pathways. Numbered citations within the diagram refer to publications in the reference list that
provide evidence for each of the reaction steps illustrated. Citations that are underlined provide evidence that the pathways are
inhibited by hypercapnic acidosis in vitro. H2O2 � hydrogen peroxide; HOCl � hypochlorous acid; L-arg � L-arginine; MPO �
myeloperoxidase; NO � nitric oxide; NO2- � nitrite; NOS � nitric oxide synthase; O2 � molecular oxygen; O2- � superoxide;
ONOO- � peroxynitrite; SOD � superoxide dismutase.
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to the formation of hypochlorous acid through a myelopero-
dixase-dependent reaction (fig. 4). Hypochlorous acid is a
potent oxidant that is both microbicidal and can cause tissue
damage44,45; it directly oxidizes dihydrorhodamine.37,39 Hy-
drogen peroxide, produced by the action of superoxide dis-
mutase, also causes oxidation in the presence of myeloperox-
idase (fig. 4)45; these myeloperoxidase-dependent reactions
can also be detected by the conversion of dihydrorhodamine
to rhodamine.37,39 It has been previously demonstrated in
vitro that acidosis can inhibit this myeloperoxidase-depen-
dent oxidant pathway.19,20 Those reports, taken together
with the findings presented here that HCA-inhibited dihy-
drorhodamine oxidation independent of peroxynitrite, show
that the myeloperoxidase pathway may be an important me-
diator of oxidant reactions in the inflamed lung and that
HCA can acutely and effectively inhibit this pathway.

Nitration Reactions in the Injured Lung
If the pathways of oxidation outlined above were operating
in the injured lung, then nitrotyrosine formation would oc-
cur simultaneously through two separate mechanisms. First,
peroxynitrite can directly nitrate amino acid residues within
proteins.23,46 Second, protein nitration reactions can also
take place in the presence of myeloperoxidase, hydrogen per-
oxide-derived hypochlorous acid, and nitrite.23,47–50 Ei-
serich et al.35 showed that activated human polymorphonu-
clear neutrophils convert nitrite into nitryl chloride and
nitrogen dioxide through myeloperoxidase-dependent path-
ways, both of which readily promote nitrotyrosine forma-
tion. It is important to note that many elements of this ni-
tration pathway are also required for the oxidant reactions
that cause tissue damage, as outlined above, including mye-
loperoxidase, superoxide radical, and hydrogen peroxide (fig.
4).44,45 To confirm that these nitration pathways were active
in our model, lungs were isolated from further groups of
endotoxin-inoculated and control rats; higher concentra-
tions of nitrotyrosine were found by enzyme-linked immu-
nosorbent assay in the homogenate of the endotoxin-inocu-
lated lungs when compared with controls. This finding was
supported by immunofluorescent staining showing increased
numbers of cells intensely stained for nitrotyrosine in the
endotoxin group when compared with control lungs. These
findings are compatible with those of others showing that
low levels of nitrotyrosine were found in normal lungs and
that these were markedly increased after endotoxin expo-
sure.51 Increased nitrotyrosine has also been demonstrated in
human lungs after ALI.52

Clinical Implications
The results of our experiments may have important implica-
tions for the understanding and management of acute HCA
in patients in the intensive care unit and in the operating
theater. It has been suggested that induction of HCA by
addition of carbon dioxide to the inspired gas could be used
as a deliberate therapeutic strategy to reduce pulmonary in-
flammatory responses in patients with ALI. Our demonstra-

tion that HCA can immediately reduce damaging oxida-
tive reactions in endotoxin-injured lungs provides direct
evidence of a mechanism through which hypercapnia
could potentially act to prevent further lung damage. In
particular, we show for the first time that this effect occurs
even when lung inflammation and injury are already es-
tablished, providing direct evidence for a potential thera-
peutic mechanism.

What is the evidence that oxidation reactions play an
important role in mediating the lung damage observed in
ALI/ARDS and that altering oxidation can influence out-
come? In a variety of cellular and animal models of these
diseases, there are increased concentrations of oxidants, in-
creased activity and expression of enzymes that produce ox-
idant species, including nicotinamide adenine dinucleotide
phosphate oxidases and myeloperoxidases, and increased
products of damaging oxidant reactions.4,14–23,34 A variety
of interventions that reduce the concentration of these oxi-
dant species including, neutrophil depletion, the administra-
tion of the oxidant scavenger tempol, administration of re-
combinant catalase, the antioxidant N-acetylcysteine, and
the deletion of ncf1, which controls oxidant production, all
protect against lung damage.44,53–56 In patients with ALI/
ARDS, the markers of oxidant-mediated reactions are also
elevated.57–61 Moreover, in neutropenic patients with ALI,
the lung injury worsens as neutrophils, the major cellular
source of oxidants in this condition, recover in number.15

These reports show that multiple different methods of inhib-
iting oxidant reactions ameliorate ALI/ARDS and suggest
that the HCA-mediated inhibition of oxidative reactions
that we have identified could also ameliorate ALI/ARDS,
although we have not shown this directly.

When interpreting our findings, it is important to con-
sider carefully the model of endotoxin-induced lung injury
that we used. This is a sterile model in that there are no live
bacteria present. Many previous reports have shown that in
sterile models, HCA protects against lung injury, including
endotoxin, ischemia–reperfusion, and ventilator-induced
lung injury.4–7,62 However, in the presence of live bacteria-
induced injury, we have recently reported that HCA worsens
lung injury and that this effect is mediated by inhibition of
neutrophil function that allows increased bacterial prolifera-
tion.33 The finding reported here sheds further light on this
previously reported deleterious action of HCA. Production
of potent oxidants by neutrophils through myeloperoxidase-
mediated reactions is an essential pathway in microbicidal
host defense, particularly during the early stages of infec-
tion.45 Inhibition of this pathway by HCA could account, at
least in part, for the increased bacterial proliferation and
worsened lung damage that we previously observed in HCA,
thus reconciling the beneficial effects of HCA observed in
many models of ALI/ARDS with the deleterious actions seen
in the presence of bacterial infection. In the clinical setting,
recognizing this immunosuppressive effect of HCA is ex-
tremely important because it could worsen lung injury
caused by bacteria unless the infection was effectively treated
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with appropriate antibiotic therapy. Moreover, this adverse
consequence of the antioxidant action of HCA will occur
whether the HCA is caused “iatrogenically” as a result of
ventilation strategy or is an unavoidable consequence of se-
vere lung disease.

Conclusions
This study demonstrates for the first time that HCA reduces,
within minutes of onset, in vivo pulmonary oxidative reac-
tions in a model of endotoxin-induced lung injury. Our find-
ings also suggest that nitric oxide-dependent peroxynitrite
production is not required for oxidant reactions in the
acutely inflamed lung and provide evidence for an inhibitory
effect of HCA on myeloperoxidase-dependent oxidation in
vivo. The demonstration of an acute antioxidant effect of
HCA in vivo provides a mechanistic basis for the potential
therapeutic effects of this strategy in patients in whom
ALI is well established before presentation to the intensive
care unit. These findings suggest that the potential effects
of HCA require further investigation in the clinical setting
of critical care.
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