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Adenosine: An Old Drug Newly Discovered
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Over decades, anesthesiologists have used intravenous aden-
osine as mainstay therapy for diagnosing or treating supraven-
tricular tachycardia in the perioperative setting. More recently,
specific adenosine receptor therapeutics or gene-targeted mice
deficient in extracellular adenosine production or individual
adenosine receptors became available. These models enabled
physicians and scientists to learn more about the biologic func-
tions of extracellular nucleotide metabolism and adenosine sig-
naling. Such functions include specific signaling effects
through adenosine receptors expressed by many mammalian
tissues; for example, vascular endothelia, myocytes, heptocytes,
intestinal epithelia, or immune cells. At present, pharmacolog-
ical approaches to modulate extracellular adenosine signaling
are evaluated for their potential use in perioperative medicine,
including attenuation of acute lung injury; renal, intestinal,
hepatic and myocardial ischemia; or vascular leakage. If these
laboratory studies can be translated into clinical practice, aden-
osine receptor–based therapeutics may become an integral
pharmacological component of daily anesthesiology practice.

THE observation that intravenous adenosine causes a
temporary heart block dates back many years. In 1927,
Drury and Szent-Gyorgyi from the University of Cam-
bridge, United Kingdom, performed an experiment
where they injected extracts from cardiac tissues intra-
venously into a whole animal. They were surprised to
notice a transient disturbance of the cardiac rhythm and
slowing of the heart rate.1 After several purification
steps, the authors were able to identify the biologically
active compound of the extract as an “adenine com-
pound.”1 Adenine is a purine-based nucleobase (similar
to guanine) involved in many biologic functions, includ-
ing cellular respiration or protein biosynthesis (as com-
ponent of deoxyribonucleic acid and ribonucleic acid).
Looking back from today’s perspective, it seems likely
that the induced slowing of the heart rate was caused by
the pharmacological activity of adenosine.1 Adenosine
belongs to the molecular group of nucleosides, com-
posed of an adenine group attached to a ribose sugar

(fig. 1). It took almost 50 yr from these early discoveries
of the heart rate-slowing effects of “adenine com-
pounds”1 to the clinical use of adenosine in treating
patients with supraventricular tachycardia.2 However,
intravenous adenosine has remained a mainstay form of
clinical therapy for diagnosing or treating patients with
supraventricular arrhythmias since the 1980s.3,4 In fact,
intravenous adenosine is among the most frequently
used antiarrhythmic medications in the clinical practice
of anesthesiology,4 including treatment of supraventric-
ular tachycardia in many perioperative settings, such as
cardiothoracic anesthesia,5 critical care medicine,6 or
obstetric anesthesia.7 In addition, adenosine-induced in-
duction of a transient cardiac arrest is frequently used for
assisting accurate deployment of vascular stent grafts in
the major blood vessels.8,9

In addition to its clinical role as antiarrhythmic agent,
adenosine has been implicated in diverse areas of medi-
cine. An important clinical application for extracellular
adenosine signaling is its potent effect as arterial vasodila-
tor. For example, the adenosine-uptake inhibitor dipyrid-
amole is used during pharmacologically-induced stress-ech-
ocardiography to enhance vascular adenosine levels,
causing coronary vasodilatation, and unmasking a clinically
relevant coronary artery obstruction.10 In addition, adeno-
sine functions as platelet aggregation inhibitor.11 For exam-
ple, a recent study investigated different platelet inhibitors
in the prevention of recurrent stroke, and found that ex-
tended-release dipyridamole in combination with aspirin is
equally effective as the 5=-adenosine triphosphate (ATP)
receptor antagonist clopidogrel.12 Moreover, the nonspe-
cific adenosine receptor antagonist caffeine has been sug-
gested for the prevention or treatment of postdural puncture
headache.13 While this indication has been challenged,13 caf-
feine remains an important therapeutic agent in the treatment
or prevention of caffeine withdrawal headache in periopera-
tive patients.14,15 Similarly, the nonspecific adenosine recep-
tor antagonist theophylline has been used in the past for
treating obstructive airway disease, but has been replaced by
inhaled long-acting �-agonist bronchodilators because of less
drug-drug interactions and toxicity from drug overdosing.16

In addition to these well-established clinical applica-
tions of adenosine, basic research has implicated extra-
cellular adenosine as an endogenous distress molecule17

with profound impact on immune response17,18 and
adaptation to limited oxygen availability (hypoxia).19–23

In fact, only recently the research field of extracellular
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adenine nucleotide metabolism and adenosine signaling
rapidly expanded to become an extremely dynamic and
exciting field of investigation, as genetic models and
specific pharmacological agents became available. For
example, mice with genetic defects in the enzymes re-
sponsible for extracellular adenosine generation
(cd39�/� or cd73�/� mice, see “Extracellular Adenosine
Generation”), or for individual adenosine receptors al-
lowed scientists to specifically target the contribution of
extracellular adenosine generation or signaling through
individual receptors in a wide range of disease models.

Biology of Extracellular Adenosine

Extracellular Adenosine Generation
Adenosine is implicated in a wide variety of basic

biologic functions, including nucleotide biosynthesis or
cellular energy metabolism. On the outside of the cell,
adenosine mainly serves as a signaling molecule and its
biologic functions occur through the activation of aden-
osine receptors (ARs) localized on the extracellular sur-

face of the cell membranes. Particularly during condi-
tions of cellular distress (inflammation, hypoxia, acute
injury), extracellular adenosine stems from phospho-es-
ter hydrolysis of its precursor molecules, ATP, 5=-adenosine
diphosphate (ADP), or 5=-adenosine monophosphate
(AMP).24 These molecules (so-called nucleotides) consist of
the nucleoside adenosine, bound to a varying number of
phospho-esters attached to the 5=-designated atom of its
ribose sugar ring (fig. 1). In the absence of catalytic en-
zymes capable of hydrolyzing nucleotides, extracellular
ATP, ADP, and AMP would be relatively stable. However,
most cell types express enzymes on their cell surface that
catalyze nucleotide-phospho-hydrolyzes. Typically, this
process occurs in a three-step reaction. As the first step,
multiple cell types release intracellular stored nucleotides,
particularly in the form of ATP and ADP.24–26 It is impor-
tant to point out that intracellular ATP levels are very high
(5–8 mM). Therefore, nucleotide release from intracellular
sources can occur during cellular damage or death (lysis,
necrosis, apoptosis, and so forth), or through specific gra-
dient-driven channels.27,28 Activated platelets that release
ADP from stored intracellular vesicles via granular release
provide an additional source of extracellular nucleotides.29

As a second step (fig. 1), extracellular ATP and ADP are
rapidly converted to AMP by the ecto-apyrase (CD39).
CD39 is a widely expressed surface-bound enzyme that
is expressed on multiple cell types30 and serves in a dual
role. On the one hand, CD39 is responsible for extracel-
lular adenosine production by generation of AMP. As
such, pharmacological inhibition or genetic deletion of
CD39 is associated with attenuated extracellular adeno-
sine levels and defects in extracellular adenosine signal-
ing.31,32 At the same time, CD39 catalyzes the key step
for extracellular breakdown of ATP and ADP, which are
both important signaling molecules, particularly during
vascular thrombosis or inflammation.33,34 Thus, pharma-
cological inhibition or genetic deletion of CD39 is also
associated with elevated ATP or ADP signaling effects.35

Therefore, studies in cd39�/� mice have to address the
question if an observed phenotype is related to en-
hanced nucleotide (ATP/ADP), or attenuated adenosine
signaling.31,32,36 While gene-targeted mice for CD39 are
viable and do not exhibit obvious immunologic de-
fects,33 experimental approaches have identified several
phenotypes, including a disordered homeostasis and
thromboregulation,33 and increased susceptibility to re-
nal,31,37 myocardial,32,38,39 or central nervous34,40 sys-
tem ischemia or acute lung injury.36,41 In addition, CD39
plays an important role in organ transplantation38 or
hepatic regeneration after partial hepatectomy.42

The third and final step in extracellular adenosine
generation (fig. 1) is catalyzed by the 5=-ecto-nucleoti-
dase (CD73), a membrane-bound glycoprotein that rap-
idly converts extracellular AMP to adenosine. CD39 and
CD73 belong to a family of ecto-nucleotidases that rap-
idly hydrolyze ATP/ADP to AMP (CD39), or AMP to

Fig. 1. Extracellular Adenosine Generation. Adenosine is an extra-
cellular signaling molecule that is generated from its precursor
molecules 5=-adenosine triphosphate (ATP) and 5=-adenosine
monophosphate (AMP). This process consists of a two-step enzy-
matic reaction. Extracellular ATP released by multiple cell types
(e.g., platelets, endothelia, epithelia, or inflammatory cells) is rap-
idly converted to AMP by the ecto-apyrase (CD39). As a second step
in extracellular adenosine generation, AMP is converted by the
5=-ecto-nucleotdase (CD73) to adenosine. Thus, extracellular aden-
osine is available on the cell surface to activate its receptors.
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adenosine (CD73), respectively.17,43 Genetic deletion or
pharmacological inhibition of CD73 is associated with
elevated AMP and attenuated adenosine levels within the
extracellular fluids.44–48 Similar to gene-target mice for
CD39, cd73�/� mice appear to have a normal immune
system and are healthy when housed in a specific patho-
gen-free animal facility.49 Comparative measurements of
CD73 activity in wild-type or cd73�/� mice revealed that
CD73 levels are particularly high in the intestine, brain,
kidneys and lungs.49 Studies of cd73�/� mice indicate
that these animals experience profound vascular leakage
and pulmonary edema when exposed to ambient hyp-
oxia (8% oxygen over 4 h) as compared with littermate
controls.49 Consistent with the high enzymatic levels of
CD73 in the lungs, kidneys, and intestine,49 other studies
also unveiled a critical role of CD73 in pulmonary41 or
intestinal barrier function during ambient hypoxia,48 co-
litis,50 and renal45 or intestinal ischemia.46,51 Taken to-
gether, extracellular adenosine mainly stems from
phospho-hydrolysis of precursor nucleotides, a meta-
bolic pathway that is highly regulated by transcription-
ally controlled enzymes (CD39 and CD73, fig. 1).

Extracellular Adenosine Signaling
Extracellular adenosine mainly serves as a signaling

molecule that can activate any of four ARs.17 At present,
four different receptors have been described (A1 AR,
A2A AR, A2B AR, and A3 AR; fig. 2). Because of the fact
that individual ARs result in different biologic functions,
it is important to point out that extracellular adenosine
signaling effects strongly depend on the relative expres-

sion pattern of ARs on the extracellular surface of an
individual cell types or a specific tissue.18,24,41,44,51–55

ARs contain seven transmembrane spanning domains
and are coupled to intracellular guanosine 5’-triphos-
phate–binding proteins, using intracellular cyclic AMP
(cAMP) as a second messenger.56 Adenosine activates
A1, A2A, or A3 ARs with EC50 values between 10 nM to
1 �M.56 In contrast, activation of the A2B AR generally
requires adenosine levels that exceed 10 �M (EC50 of 24
�M).56,57 Under physiologic conditions, typical adeno-
sine concentrations remain lower than 1 �M.56 There-
fore, activation of A1, A2A or A3 ARs can occur during
physiologic conditions. While it remains difficult to esti-
mate the adenosine concentrations locally present dur-
ing an intimate cell-cell contact, it appears that the
higher adenosine concentrations required for activa-
tion of the A2B AR are mainly achieved during patho-
physiological conditions (hypoxia, inflammation, isch-
emia).17,39,44,46,47,51,53–55,58 In addition, the A2B AR is
dually coupled to cAMP and calcium signaling pathways,
with activation of the A2B AR leading to a rise in intra-
cellular calcium.59 As biologic functions elicited by aden-
osine signaling depend on the adenosine concentrations
at the cell surface, several other factors, including recep-
tor density and the functionality of the intracellular sig-
naling pathways coupled to adenosine receptors, are
important determinants of signaling effects.56 Moreover,
specific transcriptional changes in the pattern of AR
expression during pathophysiological conditions such as
hypoxia, ischemia, or inflammation have the potential to
significantly alter AR signaling events.24,51,53,60,61

AR signaling occurs through the changes in adenylyl
cyclase activity, resulting in subsequent alteration of
intracellular cAMP levels as a second messenger.17 Based
on their ability to elevate or to attenuate cAMP, ARs were
initially classified as A1 ARs (attenuation of cAMP) or A2
ARs (elevation of cAMP), respectively.62 However, sub-
sequent studies have refined the classification of A2 ARs
into two subgroups, A2A ARs with a high affinity, and
A2B ARs with a low affinity for adenosine.63 More re-
cently, the A3 AR was discovered as a fourth AR. Similar
to the A1 AR, the A3 AR signaling is associated with
attenuation of intracellular cAMP levels.56 Examples for
typical physiologic responses associated with the activa-
tion of individual ARs include adenosine-mediated bra-
dycardia via activation of the A1 AR,64 arterial vasodila-
tation or inhibition of platelet aggregation via activation
of the A2A AR,11,65–67 ischemic preconditioning of dif-
ferent organs via activation of the A2B AR,44,54,55 or
rodent mast cell degranulation through A3 AR–depen-
dent attenuation of intracellular cAMP concentrations
(fig. 2).68 Taken together, extracellular adenosine
mainly exerts its biologic actions through activation of
four ARs. While activation of the A1 AR or the A3 AR
leads to attenuation of intracellular cAMP levels,
activation of the high-affinity A2A AR or the low-

Fig. 2. Extracellular adenosine signaling. Extracellular adenosine
exerts its biologic effects through activation of adenosine recep-
tors (ARs). At present, four different ARs have been identified. A1
AR, A2A AR, A2B AR, and A3 AR. ARs are G-protein coupled recep-
tors that use cyclic adenosine monophosphate (cAMP) as a second
messenger. While signaling events through the A1 or A3 AR
dampen intracellular cAMP levels, activation of the A2A or A2B AR
elevates cAMP levels. Biologic examples for AR signaling events
include adenosine-elicited heart-block for activation of the A1,
vasodilation for the A2A, vascular barrier function for the A2B, or
murine mast cell degranulation for the A3AR.
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affinity A2B AR are associated with elevation of
cAMP levels (fig. 2).

Extracellular Adenosine Uptake
When using intravenous adenosine in the treatment of

perioperative cardiac arrhythmias, anesthesiologists rely
heavily on the short half-life of adenosine. In fact, the
heart block induced in patients treated with a rapid
intravenous bolus of adenosine is terminated because of
the swift decline of plasma adenosine concentrations.
Thus, the adenosine-induced heart block typically lasts
for a period of only 5–10 s. The main mechanism respon-
sible for the fast decline of vascular adenosine levels
after intravenous injection is uptake of adenosine from
the extracellular to the intracellular compartment,69 fol-
lowed by rapid intracellular metabolism via the adeno-
sine deaminase (conversion to inosine) or adenosine
kinase (conversion to AMP).70–72 Adenosine can traverse
the cell membrane through concentrative or equilibra-
tive nucleoside transporters. Equilibrative nucleoside
transporters (ENT) 1 and ENT2 are functionally most
relevant adenosine transporters (fig. 3).60,69 ENTs repre-
sent channels that allow adenosine to freely cross the
cell membrane after a concentration gradient.69 Under
physiologic conditions, differences between intra- or ex-
tracellular adenosine concentrations are very small.
Therefore, net flow through ENTs is minimal under nor-
mal circumstances (fig. 4).69 This is different after intra-
venous application of an adenosine bolus. In this setting,
extracellular adenosine concentrations rise substantially,
and flow through ENTs is directed from the extracellular
compartment towards the intracellular space, resulting in
swift uptake of adenosine. ENTs are widely expressed,
including vascular endothelia, epithelia, erythrocytes, or

inflammatory cells. Rapid adenosine transport as described
above is the main mechanism for the prompt decline in
adenosine plasma concentrations after an IV adenosine
bolus, and is responsible for the swift termination of
adenosine-induced heart block.

Similar transport phenomena become important dur-
ing conditions when extracellular adenosine levels are
elevated as a response to hypoxia, ischemia, inflamma-
tion, or other injurious conditions (distress, fig. 4).
Again, these conditions cause adenosine transport
through ENTs to be directed from the extracellular to-
wards the intracellular space (fig. 4). Taken together,
extracellular adenosine signaling is terminated by rapid
adenosine transport through diffusion-limited channels
across the cell membrane. These transporters (mainly
ENT1 and ENT2) are placed in an anatomically ideal
position to modulate extracellular adenosine levels and
signaling events. Therefore, pharmacological inhibition
of adenosine transporters (e.g., with dipyridamole) or
transcriptional mechanisms to repress ENT expression
result in prolonged actions of extracellular adenosine.73

As such, dipyridamole treatment will enhance extracel-
lular adenosine signaling events, as long as the transport
of adenosine is directed from the outside towards the
inside of the cell (e.g., during hypoxia, ischemia, inflam-
mation and so forth; fig. 4).60,69,74

Intracellular Adenosine Metabolism
After uptake into the intracellular compartment, adeno-

sine is rapidly metabolized. Two alternative metabolic path-
ways compete for the intracellular fate of adenosine. Aden-
osine can either be converted to inosine through enzymatic
activity of the adenosine deaminase (fig. 5),71,72,75,76 or
adenosine can be converted by the adenosine kinase to

Fig. 3. Extracellular adenosine uptake. Extracellular adenosine
is taken up from the extracellular to the intracellular space via
nucleoside transporters. Functionally, extracellular adenosine
uptake is mainly achieved through equilibrative nucleoside
transporters (ENTs), ENT1 and ENT2. These transporters repre-
sent diffusion-limited channels that allow adenosine to freely
cross the cell membrane after a concentration gradient.

Fig. 4. Extracellular adenosine uptake at baseline or during
distress. Adenosine (A) can freely cross the cell membrane via
equilibrative nucleoside transporters (ENTs). ENTs represent
diffusion–limited channels that allow free passage of adenosine
through the cell membrane. During baseline conditions, only a
small concentration gradient for adenosine across the cell
membrane is present. Therefore, flux through ENTs is minimal.
In contrast, extracellular adenosine concentrations are elevated
during conditions of hypoxia, ischemia, or inflammation (dis-
tress). Under these conditions, adenosine flux through ENTs is
directed mainly from the extracellular space towards the intracel-
lular compartment. As long as flux through ENTs is directed from
the outside towards the inside of the cell, inhibitors of ENTs (such
as dipyridamole) or transcriptional mechanisms that repress
ENTs will attenuate adenosine transport, and result in increased
extracellular adenosine concentrations and signaling effects.
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AMP (fig. 5).17,70 It is important to point out that intracel-
lular adenosine metabolism represents an additional mech-
anism to modulate extracellular adenosine levels and sig-
naling events. For example, genetic deletion of the
adenosine deaminase in mice is associated with dramatic
increases in extracellular adenosine levels, and a pheno-
type that is characterized by pulmonary adenosine toxi-
city.76,77 Similarly, inhibition of adenosine kinase is associ-
ated with increases in extracellular adenosine signaling,
which can be beneficial to attenuate the detrimental effects
of hypoxia or ischemia.70,78

Extracellular Adenosine and Hypoxia

Modulation of Extracellular Adenosine Signaling
Events by Hypoxia
Extracellular adenosine plays a critical role in tissue ad-

aptation to limited oxygen availability (hypoxia).20–22

Along these lines, several studies have found that extracel-
lular adenosine levels are elevated during conditions of
hypoxia. For example, one study exposed human volun-
teers to normoxia or moderate hypoxia (oxygen saturation
of 80% over 20 min). After hypoxia exposure, adenosine
levels increased from approximately 20 nM to over 50 nM

concentrations.79 Moreover, adenosine tissue concentra-
tions in hearts32,44 or kidneys31,45 exposed to ischemia
increase approximately fivefold. Similar studies with mice
deficient in extracellular adenosine generation suggest that
ischemia-induced increases of extracellular adenosine oc-
cur mainly in the extracellular space.31,32,44,45

Over the past decade, convincing evidence has dem-
onstrated a central role of hypoxia-inducible factor
(HIF) in mammalian oxygen homeostasis.23,80 There-
fore, it is not surprising that HIF is central in the

transcriptional coordination of hypoxia-elicited adeno-
sine responses.21,48,54,60,61,70,74 The transcription factor
HIF-1 is composed of two subunits: Constitutively ex-
pressed HIF-1� and oxygen-regulated HIF-1�.80 Under
normoxic conditions, HIF-1� is subjected to hydroxyla-
tion on proline residues, resulting in proteasomal degra-
dation.81 Under hypoxic conditions, hydroxylation is
inhibited, allowing HIF to be active and to stimulate the
transcriptional activation of HIF-dependent genes.54

Transcriptional induction of HIF-target genes is tailored
towards adapting the cells to limited oxygen availability
(e.g., by inducing a switch from aerobic metabolism to
anaerobic glycolysis)82 or towards restoring adequate
tissue oxygen levels (e.g., induction of erythropoietin,
resulting in enhanced erythropoiesis).81

Acute hypoxia-elicited changes of extracellular adeno-
sine result in increased adenosine signaling events. Sev-
eral steps of this transcriptionally controlled pathway are
coordinated by HIF. As a first step, hypoxia coordinates
increases in extracellular adenosine production. This is
achieved by a transcriptional induction of extracellular
enzymes that produce extracellular adenosine. While
CD39 transcription during hypoxia is driven by the tran-
scription factor Sp1,39 hypoxia-induced stabilization of
HIF profoundly enhances CD73 transcription, transla-
tion, and surface activity.48 As such, studies of the CD73
promoter revealed a binding site for HIF-1, and addi-
tional studies with promoter constructs, including site-
directed mutagenesis of the HIF-binding site or HIF loss
and gain of function studies confirmed HIF-1 in the
transcriptional induction of CD73 during hypoxia.48,54

Second, studies investigated the consequences of hyp-
oxia or ischemia on extracellular adenosine signaling
events. Such studies revealed a selective induction of the
A2B AR with ambient hypoxia.24,61 Similarly to the stud-
ies performed with CD73, strong evidence supports a
critical role for HIF-1� in the transcriptional induction of
the A2B AR with hypoxia or ischemia.54,61

Third, studies of extracellular adenosine uptake indi-
cate that HIF-1 coordinates transcriptional repression of
the adenosine transporters ENT160 and ENT2,74 resulting
in attenuated uptake of extracellular adenosine and en-
hanced extracellular adenosine signaling events. Finally,
HIF also coordinates transcriptional changes in intracel-
lular adenosine metabolism.83 As such, acute hypoxia
results in HIF-dependent transcriptional repression of
adenosine kinase, attenuated adenosine metabolism, and
eventually in enhanced extracellular adenosine signaling
events. Taken together, extracellular adenosine signaling
events are enhanced during hypoxia by a series of steps
mainly coordinated by the transcription factor HIF-1.
Hypoxia-induced increases in adenosine signaling are
critical to counterbalance the deleterious effects of acute
hypoxia, including attenuation of hypoxia-induced vas-
cular leakage,49,58,70 ischemia-associated organ dysfunc-
tion,46,51 or hypoxia-induced inflammation.18,23,24

Fig. 5. Intracellular adenosine metabolism. After adenosine up-
take via equilibrative nucleoside transporters (ENTs), intracel-
lular adenosine is rapidly metabolized. Two competing path-
ways exist. Intracellular adenosine can be metabolized to
inosine by the adenosine deaminase. Alternatively, adenosine is
phosphorylated by the adenosine kinase to 5=-adenosine mono-
phosphate (AMP).
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Adenosine Signaling during Hypoxia-induced
Inflammation
Sites of acute inflammation are characterized by shifts

in the supply and demand of metabolites that result in
limited oxygen availability (inflammation-associated hyp-
oxia).20,21,23 However, studies of ambient hypoxia pro-
vided strong evidence that hypoxia itself represents an
inflammatory stimulus.84,85 For example, ambient hyp-
oxia exposure causes activation of the transcription fac-
tor nuclear factor NF-�B, which activates transcription of
genes encoding pro-inflammatory molecules.84–86 More-
over, exposure of mice to ambient hypoxia (e.g., 8%
oxygen over 4–8 h) induces increased leakage through
epithelial or endothelial barriers, and inflammatory cell
accumulation in mucosal organs.18,24,48,58,60,70 Tissue in-
flammation caused by limited oxygen availability plays an
important role in several human clinical conditions, includ-
ing solid organ transplantation (e.g., lung or liver), when
limited oxygen availability caused by graft ischemia is asso-
ciated with increased inflammation, ischemia–reperfusion
injury, and early organ failure.87,88 Similarly, hypoxia-asso-
ciated inflammation strongly influences the clinical out-
come of organ ischemia, and antiinflammatory therapeutic
approaches have been proposed for myocardial,32,44,54,89

renal,55 hepatic,47 or intestinal ischemia.46,51 Because of
their large surface areas, mucosal organs such as the lungs
and the intestine are particularly prone to hypoxia-induced
inflammation.23,46,51

Whereas tissue hypoxia induces hypoxia-induced in-
flammation, hypoxia also drives hypoxia-associated anti-
inflammatory responses, particularly through changes in
gene expression coordinated by the transcription factor
HIF-1.20,21 As outlined above, HIF-1 coordinates the me-
tabolism and signaling properties of extracellular aden-
osine21,54,60,70 as an important antiinflammatory agent.
HIF-1 also induces metabolic changes in immune cells by
switching from aerobic metabolism to glycolysis, and
thereby markedly affects immune responses.20 HIF-1� is
stabilized in inflamed90,91 or infected tissues,92 and some
data suggest an antiinflammatory and tissue protective
role of HIF-1� signaling during acute inflamma-
tion20,21,54,60,70,90–93 or bacterial infections.92,94 In this
context, a recent study identified an important role of
the neuronal guidance molecule netrin-1 in enhancing
extracellular adenosine signaling pathways. Given that
mucosal surfaces are particularly prone to hypoxia-elic-
ited inflammation, this study sought to determine the
role of netrin-1 in hypoxia-induced inflammation. The
authors detected HIF-1�–dependent induction of ne-
trin-1 gene Ntn1) expression in hypoxic epithelia. Neu-
trophil transepithelial migration studies showed that by
engaging A2BARs on neutrophils, Ntn1 attenuates neu-
trophil transmigration. Exogenous Ntn1 suppressed hy-
poxia-elicited inflammation in wild-type, but not A2B
AR-deficient mice, and inflammatory hypoxia was en-
hanced in Ntn1�- as compared with Ntn1�/� mice.

Taken together, these studies demonstrate that HIF-1�–
dependent induction of Ntn1 attenuates hypoxia-elicited
inflammation at mucosal surfaces by enhancing extracel-
lular adenosine signaling events (fig. 6).

Using Adenosine Signaling Pathways for
Perioperative Medicine

The field of extracellular adenosine signaling has rapidly
expanded over the past years. This goes hand in hand with
the recent availability of gene-targeted mice that allow for
studies of specific alterations in adenosine generation, sig-
naling, or metabolism in a large array of disease models.
Therefore, the following examples for potential therapeu-
tic applications of extracellular adenosine are not meant to
be a complete list, but resemble therapeutic examples
that could potentially be applied to the setting of peri-
operative medicine. Based on the biologic effects of
acute hypoxia on enhancing extracellular adenosine ef-
fects, many of these examples include conditions of
limited oxygen availability where adenosine signaling is
pivotal to tissue adaptation and attenuation of the dele-
terious effects of hypoxia-associated inflammation.

Acute Lung Injury
Acute lung injury (ALI) is a syndrome consisting of

acute hypoxemic respiratory failure with bilateral pul-
monary infiltrates, not attributable to left heart failure.95

Despite optimal management consisting of aggressive
treatment of the initiating cause, vigilant supportive
care, and the prevention of nosocomial infections, mor-
tality ranges between 35 and 60%.95 The pathogenesis of
ALI is characterized by the influx of a protein-rich edema
fluid into the interstitial and intraalveolar spaces as a
consequence of increased permeability of the alveolar–
capillary barrier. The importance of endothelial injury

Fig. 6. Netrin-1 dampens hypoxia-induced inflammation by en-
hancing extracellular adenosine signaling. During hypoxia-elic-
ited inflammation of mucosal organs such as the lungs or the
intestine, the transcription factor hypoxia-inducible factor
(HIF) coordinates the induction of netrin-1. While originally
described as a neuronal guidance molecule, recent studies im-
plicate netrin-1 in the regulation of inflammatory responses.
Here, epithelial-released netrin-1 dampens neutrophil accumu-
lation in the hypoxic mucosa. This process involves activation
of A2B adenosine receptor (AR)-dependent signaling pathways
of neutrophils (alternative AR activation).
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and increased vascular permeability to the formation of
pulmonary edema in this disorder has been well estab-
lished.95 Nevertheless, molecular details of how pulmo-
nary capillary leakage is caused or maintained during ALI
are largely unknown, and studies linking its mechanisms
with mechanical ventilation are currently areas of in-
tense investigation.

Despite the large impact of ALI on morbidity and
mortality in critically ill patients,95 many episodes of ALI
are self-limiting and resolve spontaneously through un-
known mechanisms. For example, patients undergoing
major surgery requiring prolonged mechanical ventila-
tion have an overall incidence of ALI between 0.2 and
5%, depending on the kind of surgery.96–98 Based on the
rare occurrence of clinically relevant ALI in patients
requiring mechanical ventilation, recent studies found
that extracellular adenosine production via CD39 and
CD73 are enhanced during cyclic mechanical stretch in
vitro, or during ventilator-induced lung injury (VILI) in
vivo. In fact, cd39�/� or cd73�/� mice experience en-
hanced lung inflammation and pulmonary edema in dif-
ferent models of ALI.36,41,99 Further studies examined
the contribution of endogenous adenosine signaling to
attenuation of VILI or endotoxin-induced lung injury.53

Initial profiling studies using gene-targeted mice for the
A1, A2A, A2B, or A3 AR revealed that genetic deletion of
the A2B AR was specifically associated with reduced
survival time and increased pulmonary albumin leakage
(5.3 � 0.15-fold) during VILI. Studies in wild-type mice
showed that treatment with A2B AR-selective antagonist
PSB1115 resulted in enhanced pulmonary inflammation,
edema, and attenuated gas exchange, while treatment
with the A2B AR agonist BAY 60-6583 attenuated VILI.
Studies in bone marrow–chimeric A2B AR mice demon-
strated pulmonary A2B ARs in VILI-induced albumin
leakage and edema, while increases in pulmonary inflam-
mation were, at least in part, bone marrow–mediated.
Measurement of alveolar fluid clearance indicated that
A2B AR signaling enhanced amiloride-sensitive fluid
transport via elevation of pulmonary cAMP levels (sim-
ilar to �-adrenergic agonist stimulation), suggesting that
A2B AR agonist treatment protects by drying out the
lungs during VILI.53 Taken together, such studies dem-
onstrate that extracellular adenosine production via
CD39 and CD73, in conjunction with A2B AR signaling,
represents an endogenous pathway to protect the lungs
from pulmonary edema and excessive inflammation.41,53

Moreover, the A2B AR represents a potential therapeutic
target for enhancing fluid transport and attenuating pul-
monary edema and lung inflammation during ALI.53

Other studies implicated A2B AR signaling in attenuating
acute lung inflammation during hypoxia by dampening
proinflammatory signaling pathways in the lungs, involv-
ing A2B AR-mediated cullin-1 deneddylation.100 It is im-
portant to point out that while extracellular adenosine
signaling appears to be protective during acute forms of

lung injury, adenosine signaling may enhance aspects of
chronic forms of lung injury, such as pulmonary fibro-
sis.76 For example, adenosine-deaminase–deficient mice
develop signs of chronic pulmonary injury in association
with chronically elevated pulmonary adenosine levels. In
fact, adenosine-deaminase–deficient mice die within
weeks after birth from severe respiratory distress,76 and
recent studies suggest that attenuation of adenosine sig-
naling may reverse the severe pulmonary phenotypes in
adenosine-deaminase–deficient mice, suggesting that
chronic adenosine elevation can affect signaling path-
ways that mediate aspects of chronic lung disease.76,101

Iatrogenic Hyperoxia
Other studies have indicated a protective role of sig-

naling through the A2A AR during inflammatory condi-
tions, including different forms of ALI.19,22,102 As such, a
recent study by Thiel et al., in a team led by Michail
Sitkovsky, tested the hypothesis that oxygenation weak-
ens a tissue-protecting mechanism triggered by hypoxia.
Similar to signaling through the A2B AR,53 hypoxia also
triggers a signaling pathway mediated by the A2A AR
that attenuates lung inflammation and tissue damage.22

This hypoxia-driven pathway protects the lungs from the
toxic effects of overactive immune cells such as neutro-
phils. Using a mouse model of ALI induced by bacterial
infection, Thiel et al. exposed one group of mice to
100% oxygen, mimicking therapeutic oxygenation, and
left another group at normal ambient levels (21% oxy-
gen).22 Five times more mice died after receiving 100%
oxygen than died breathing normal oxygen levels. Mice
given 60% oxygen—considered clinically safe—got
worse, but did not die. Hypoxia protects against lung
damage, the authors conclude, by working through the
A2A AR signaling pathway to control inflammation.
Above-normal oxygen levels interrupt this antiinflamma-
tory pathway, paving the way for further lung injury.103

Taken together, such studies indicate that high levels of
inspired oxygen—as may be required to provide suffi-
cient tissue oxygenation in patients with ALI—may
weaken the local tissue hypoxia-driven and AR-mediated
antiinflammatory mechanism and thereby further exac-
erbate lung injury.22

Vascular Leakage during Hypoxia
Changes in vascular barrier function closely coincide

with tissue injury of many etiologies, and result in fluid
loss, edema, and organ dysfunction. Particularly during
conditions of limited oxygen availability, as occurs dur-
ing lung injury, sepsis, or a systemic inflammatory re-
sponse syndrome, the vascular barrier becomes leaky.72

The predominant barrier (90%) to movement of macro-
molecules across a blood vessel wall is presented by the
vascular endothelium. As outlined above, extracellular
nucleotide metabolites—particularly adenosine—may
function as an endogenous protective mechanism during
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hypoxia and ischemia and could counterbalance hypoxia-
induced increases in vascular leakage. As such, the vas-
cular endothelium is the primary interface between a
hypoxic insult and the surrounding tissues. This critical
anatomic location places vascular endothelial cells in an
ideal position to coordinate extracellular metabolic
events important to endogenous responses to hypoxia.
The pacemaker enzyme of extracellular adenosine gen-
eration is CD73 (extracellular conversion of AMP to
adenosine). Endothelial cells of many origins express
constitutive CD73. Thus, extracellular nucleotides are
metabolized to adenosine by CD73, and subsequent ac-
tivation of surface adenosine receptors have been shown
to regulate endothelial barrier function. In vivo studies
in models of murine whole-body hypoxia revealed that
hypoxia-induced CD73 is critical for protecting the en-
dothelial barrier, since cd73�/� mice show increased
vascular permeability and profound pulmonary edema
upon hypoxia exposure (8% oxygen over 4 h).49 In vitro
studies of endothelial permeability suggested that activa-
tion of endothelial adenosine receptors leads to a barrier
resealing response after neutrophil transmigration.104 In
fact, all four ARs are expressed on vascular endothelia.24

To identify the role of individual ARs in attenuating
hypoxia-induced vascular leakage, a recent study found
that small-interfering ribonucleic acid–mediated repres-
sion of the A2B AR selectively increased endothelial
leakage in response to hypoxia in vitro.58 In parallel,
vascular permeability was significantly increased in vas-
cular organs of A2B AR�/� mice subjected to ambient
hypoxia (8% oxygen, 4 h). By contrast, hypoxia-induced
vascular leakage was not accentuated in A1 AR�/�-, A2A
AR�/�-, or A3 AR�/�-deficient mice, suggesting a degree
of specificity for the A2B AR. Further studies in wild-type
mice revealed that the selective A2B AR antagonist
PSB1115 resulted in profound increases in hypoxia-asso-
ciated vascular leakage, while A2B AR agonist BAY60-
6583 treatment was associated with almost complete
reversal of hypoxia-induced vascular leakage. Taken to-
gether, these studies indicate extracellular adenosine
production and signaling as a central control point for
hypoxia-associated vascular leakage.

Myocardial Ischemia
Myocardial ischemia is among the leading causes of

morbidity and mortality in surgical patients.105 Current
therapeutic interventions for myocardial ischemia focus
mainly on early and persistent coronary reperfusion.
However, percutaneous coronary intervention in combi-
nation with anticoagulation and platelet inhibitors may
not be suitable in the perioperative settings because of the
risk of bleeding from the surgical site.105 Therefore, it is not
surprising that the search for novel therapeutic approaches
to prevent or treat perioperative myocardial ischemia is
currently an area of intense investigation. A powerful strat-
egy for cardioprotection would be to pharmacologically

recapitulate the consequences of ischemic preconditioning
(intraperitoneal), where short and repeated episodes of
ischemia and reperfusion before myocardial infarction
result in attenuation of infarct sizes.73,106 Despite multi-
ple attempts to identify the underlying molecular mech-
anisms, pharmacological strategies using such pathways
have yet to be further defined and introduced into clin-
ical practice. Extracellular adenosine generation has
been studied for its role in intraperitoneal responses and
cardioprotection from ischemia for many years.107 An
important insight was gained from studies measuring car-
diac adenosine levels after preconditioning. These studies
revealed an about fivefold increase of cardiac adenosine
levels immediately after preconditioning. In contrast, aden-
osine levels derived from preconditioned myocardium in
mice deficient of extracellular adenosine generation
(cd39�/� or cd73�/� mice) was similar to unprecondi-
tioned wild-type mice.32,44,54 These studies indicate that
extracellular adenosine levels are dramatically elevated
with preconditioning.

Functional studies revealed that pharmacological inhibi-
tion or genetic deletion of extracellular adenosine produc-
tion is associated with abolished cardioprotection by intra-
peritoneal treatment.32,44 As all four ARs have been
associated with tissue protection in different settings, the
question which AR mediates intraperitoneal-dependent
cardioprotection is controversial. While some studies
found a critical role of the A1108 or the A3 AR,109 a recent
study compared intraperitoneal responses in gene-targeted
mice for all four ARs.44 While intraperitoneal-dependent
cardioprotection was attenuated in different mice, includ-
ing A1 AR�/� mice,108 complete loss of intraperitoneal-
dependent cardioprotection was observed only in A2B
AR�/� mice.44 Moreover, treatment with a specific A2B AR
resulted in a robust reduction of infarct size in wild-type
mice, but not in A2B AR�/� mice.44 Nevertheless, it is
important to point out that other AR signaling pathways
have also been associated with cardioprotection from isch-
emia, including the A1 AR108 and the A2A AR.89 In addition,
other studies have found critical roles for adenosine signal-
ing in ischemic postconditioning110—a recently described
cardioprotective modality against reperfusion injury,
through series of brief reflow interruptions applied at the
very onset of reperfusion—including signaling events in-
volving the A1 AR,111,112 A2A AR,113 A2B AR,114 or A3
AR.110 Taken together, these studies indicate cardioprotec-
tion from myocardial ischemia through CD39- or CD73-
dependent generation of extracellular adenosine and sig-
naling via ARs.32,44,54

Attenuation of Ischemia Reperfusion Injury in
Other Organs
In addition to its role in cardioprotection,32,44,54 extra-

cellular adenosine generation and signaling has also been
implicated in protection from ischemia–reperfusion in-
jury in other organ systems. For example, different stud-
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ies pointed out a protective role of extracellular adeno-
sine generation31,45 and signaling through the A2A AR115

or the A2B AR55 in renoprotection from acute ischemic
renal failure. Considerable progress has been made by
studies in gene-targeted mice that only express a specific
adenosine receptor on renal tissues or inflammatory
cells. This can be achieved by irradiation of gene-targeted
mice for a specific adenosine receptor, followed by bone
marrow transplantation from wild-type animals, and vice
versa. Studies in these bone marrow–chimeric mice dem-
onstrated that A2A ARs expressed on inflammatory
cells,115,116 and A2B ARs expressed on renal tissues,55 at-
tenuate renal ischemia–reperfusion injury. Such studies in-
dicate a potential crosstalk and/or functional compensation
among the subtypes of adenosine receptors.

Other studies found protection from intestinal46,51 or
hepatic ischemia–reperfusion injury47 by adenosine gen-
eration or signaling.47 For example, a very elegant study
demonstrated that adenosine-dependent attenuation of
hepatic ischemia reperfusion injury involves activation
of A2A ARs localized on immune cells.117 Specifically,
this study found a surprising role for adenosine-depen-
dent inhibition of natural killer T-cells, a subpopulation
of lymphocytes representing about 0.2% of peripheral
blood T-cells. Natural killer T-cells recognize the non-
polymorphic CD1 days molecule, an antigen-presenting
molecule that binds self and foreign lipids and glycolipids.
This study provides strong evidence that the activation of
natural killer T-cells by a CD1 days-dependent mechanism
play a central role in initiating the inflammatory cascade
responsible for reperfusion injury in the liver, and that
these cells are key targets of A2A AR agonist protection in
hepatic ischemia–reperfusion injury.117 Moreover, extra-
cellular adenosine production appears to play a critical role
in hepatic regeneration as observed after partial hepatec-
tomy. As such, recent studies demonstrate that regulated
phosphohydrolysis of extracellular nucleotides by CD39
coordinates both hepatocyte and endothelial cell prolifera-
tion after partial hepatectomy. Lack of CD39 activity is
associated with decreased hepatic regeneration and failure
of vascular reconstitution.42

Other Medical Applications for Adenosine Signaling
Pathways
Many other treatment modalities have used adenosine-

dependent signaling pathways. For example, experimental
studies suggest a protective role of extracellular adenosine
signaling in models of sepsis and acute inflammation, par-
ticularly through signaling events involving the A2A AR.19

Similarly, a protective and antiinflammatory role of A2B AR
signaling has been found during vascular inflammation118

or vascular injury.119 Other studies found a protective role
of extracellular adenosine generation and signaling during
murine colitis.50,120 As such, mice deficient in the A2B AR
show increased sensitivity to chemically induced intestinal
inflammation.120 Other studies found a protective role of

A2B AR agonist treatment in intestinal ischemia, highlight-
ing a tissue protective and antiinflammatory role of intesti-
nal A2B AR signaling.51 Similarly, gene-targeted mice for the
A2B AR show dramatically increased responses to immu-
noglobulin E-elicited mast cell activation, indicating that
A2B AR functions as a critical regulator of signaling path-
ways within the mast cell, which act in concert to limit the
magnitude of mast cell responsiveness when an antigen is
encountered.121 However, there may be different regula-
tory mechanisms involved in human mast cell degranula-
tion (e.g., the A2B AR).122 Other studies identified a critical
role of adenosine in stimulating angiogenesis.123 While this
is not the focus of the present review, it is important to
point out that adenosine signaling also plays a role as
a central nervous system signaling molecule. For ex-
ample, signaling through the A1 AR has been impli-
cated in reducing hypersensitivity after peripheral
nerve injury or surgery.66,124,125

Summary and Future Challenges

Adenosine has been used in the perioperative setting for
the treatment of supraventricular tachycardia for many de-
cades. More recently, research with specific AR agonists or
antagonists in conjunction with studies in genetic models
for adenosine generation or signaling have identified a
rapidly expanding field of biomedical roles and potential
therapeutic applications of extracellular adenosine signal-
ing. Particularly during conditions of limited oxygen avail-
ability as occurs during acute inflammation, organ ischemia
or acute lung injury, several pathways synergize to elevate
extracellular adenosine levels and increase adenosine sig-
naling effects. Such changes include increased extracellular
adenosine production, increased expression patterns of
specific adenosine receptors, and decreased adenosine up-
take and intracellular metabolism (fig. 7). In this context,
pharmacological strategies to enhance extracellular adeno-
sine production (e.g., treatment with apyrase or nucleoti-
dase) or specific AR agonists appear to be particularly
important to counterbalance the deleterious effects of hyp-
oxia, such as for the treatment of hypoxia-induced vascular
leakage, excessive inflammation, pulmonary edema, or
ischemia–reperfusion injury.

Most of the studies that were discussed in the present
review were performed in murine models. While we are
presently at a stage where specific AR agonists are explored
in human volunteers or patients,126 most of the studies
discussed in the present review will require translation
from murine models into a clinical setting. Moreover, spe-
cific side effects and long-term safety of pharmacological
agents using adenosine signaling pathways have to be fur-
ther defined. For example, it will be important to define the
hemodynamic consequences of specific AR agonists. Also,
it will be critical to address the question if long-term use of
AR agonists may be associated with fibrotic changes of the
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liver or the lungs. Such observations may limit these drugs
for a short-term use in an acute setting. Moreover, specific
subsets of patients who may require exclusion from ther-
apy will have to be defined.127,128

The author thanks Shelley A. Eltzschig, B.S.B.A., Artist, Mucosal Inflammation
Program, University of Colorado Denver, Denver, Colorado, for the artwork
included in this manuscript.
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