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Using Permutation Entropy to Measure the
Electroencephalographic Effects of Sevoflurane
Xiaoli Li, Ph.D.,* Suyuan Cui, M.E.,† Logan J. Voss, Ph.D.‡

Background: Approximate entropy (AE) has been proposed
as a measure of anesthetic drug effect in electroencephalo-
graphic data. Recently, a new method called permutation en-
tropy (PE) based on symbolic dynamics was also proposed to
measure the complexity in an electroencephalographic series.
In this study, the AE and PE were applied to electroencephalo-
graphic recordings for revealing the effect of sevoflurane on
brain activity. The dose–response relation of PE during sevoflu-
rane anesthesia was compared with that of AE.

Methods: Nineteen patients’ electroencephalographic data
were collected during the induction of general anesthesia with
sevoflurane. PE and AE were applied to the electroencephalo-
graphic recordings, and the performance of both measures was
assessed by pharmacokinetic–pharmacodynamic modeling and
prediction probability. To ensure an accurate complexity mea-
sure of electroencephalographic recordings, a wavelet-based
preprocessor was built in advance.

Results: Both PE and AE could distinguish between the awake
and anesthetized states and were highly correlated to each
other (r � 0.8, P � 0.004). The pharmacokinetic–pharmacody-
namic model adequately described the dose–response relation
between PE and AE and sevoflurane effect site concentration.
The coefficient R2 between PE and effect site concentration was
0.89 � 0.07 for all patients, compared with 0.60 � 0.14 for AE.
Prediction probabilities of 0.86 � 0.04 and 0.79 � 0.09 for PE
and AE showed that PE has a stronger ability to differentiate
between the awake and anesthetic states.

Conclusion: The results show that PE can estimate the
sevoflurane drug effect more effectively than AE. This method
could be applied to design a new electroencephalographic mon-
itoring system to estimate sevoflurane anesthetic drug effect.

ANALYSIS of the real-time raw electroencephalographic
signal can be used to extract a continuous index of
anesthetic drug effect on the central nervous system.
Several processed electroencephalographic indexes
have been developed to quantify anesthetic effect, and
their use has resulted in a reduction in anesthetic drug
consumption and faster recovery from anesthesia.1–3

Early attempts used spectral analysis of electroencepha-
lographic recordings, such as the spectral edge freque-
ncy4 and the median frequency.5 While these methods
are used to quantify changes in electroencephalography
due to anesthetic drug effect, these indices are sensitive

to artifact, and the dose–response relation is not opti-
mum for all anesthetic drugs. Recently, the Bispectral
Index (BIS) and spectral entropy have been used in
commercial monitoring systems: the BIS® monitor (As-
pect Medical Systems, Newton, MA) and Entropy Module
(Datex-Ohmeda, Helsinki, Finland), respectively. The
bispectral analysis is based on the phase interaction
between signals at the different frequency bands6–8; the
entropy module is based on the Shannon entropy of the
power spectrum, also called the spectral entropy, from
which two spectral entropy indicators are derived: state
entropy (0.8–32 Hz) and response entropy (0.8–47
Hz).9 The BIS cannot reliably distinguish consciousness
from unconsciousness in individual patients.10

Population neural activity has been shown to exhibit
various nonlinear behaviors.11 Because spectral entropy
is a linear measure, it is not optimum for analyzing
electroencephalographic signals with nonlinear behav-
iors. Methods from the theory of nonlinear dynamics,
however, may be appropriate for the analysis of electro-
encephalographic series.12 In particular, approximate
entropy (AE)13 can be used to quantify the regularity of
electroencephalographic series, which could provide an
index to indicate the effect of anesthetic drug during
anesthesia.14 However, the practical application of AE is
seriously limited because these methods require long,
stationary, and noiseless electroencephalographic data.
In particular, AE is limited to the quantification of the
complexity of a signal generated by a low-dimensional
dynamical system. Recently, a new method, called per-
mutation entropy (PE), was proposed as a complexity
measure of nonlinear and linear time series,15 e.g., epi-
leptic electroencephalographic series16 and anesthetic
electroencephalographic series.17,18

This study was intended to develop a new method to
reveal the anesthesia drug effect by calculating the PE of
electroencephalographic recordings. The baseline vari-
ability of PE, the ability of PE to differentiate the awake
and anesthetic states, and the relation between the
dose–response were investigated in comparison with
the AE during sevoflurane anesthesia in 19 patients. In
addition, pharmacokinetic–pharmacodynamic modeling
and prediction probability were used to evaluate and
compare the predictive performance of PE and AE to
separate the anesthetized from the awake state.

Materials and Methods

Subjects and Data Acquisition
Test subjects included 19 patients (aged 18–63 yr)
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tus I or II scheduled to undergo elective gynecologic,
general, or orthopedic surgery.19 Patient exclusion cri-
teria were preoperative use of medication acting on the
central nervous system; excessive weight or a history of
gastroesophageal reflux that would not permit gaseous
induction with sevoflurane; a history of cardiac, pulmo-
nary, hepatic, or renal disease; and use of any premedi-
cation. All subjects fasted for at least 6 h before anesthe-
sia and received no premedication. All subjects were
recruited from Waikato Hospital, Hamilton, New Zea-
land. Informed consent was obtained from all subjects
following Waikato Hospital ethics committee approval.

Before electrode application, the skin was carefully
cleaned with an alcohol swab and allowed to dry; the
electrode skin impedance was checked to be less than
7.5 k�. A composite electrode composed of a self-adher-
ing flexible band holding three electrodes was used to
record the electroencephalography between the fore-
head and temple. The spectral entropy was measured
with a plug-in M-Entropy S/5 Module (Datex-Ohmeda).
Response entropy and state entropy were sampled at 0.2
Hz. The sampling rate of electroencephalographic data
was 100/s. Inspired and expired sevoflurane concentra-
tions were measured at the mouth and sampled at 100/s.
The data were recorded on a laptop computer and
stored for later off-line analysis using MatLab (version 7;
MathWorks, Natick, MA) computational and data analy-
sis software.

Anesthetic Protocol
All of the patients were connected to a closed anes-

thesia breathing circuit via a facemask, and fresh gas
flow was set at 4 l/min. The patients were preoxygen-
ated to the satisfaction of the anesthetist in charge. Then,
sevoflurane was delivered by vaporizer at 3% inspired for
2 min, followed immediately by 7% inspired concentra-
tion. State entropy and response entropy were recorded
for comparison with awake values. The time at which
response entropy decreased to 20 or less was noted, and
7% sevoflurane was continued for a further 2 min. The
sevoflurane was then turned off until the response en-
tropy returned to a value of 70 (lightening). All data in
the current study are based on this single deepening and
lightening protocol. No attempt was made to rouse the
subjects, and no supplemental medications were admin-
istered. Loss of consciousness (LOC) was assessed by
loss of response to verbal command. This data set has
been used previously to model the pharmacokinetic–
pharmacodynamic effects of sevoflurane by using
the spectral entropy of the electroencephalographic
signals.19

Artifact Filtering
Several methods based on frequency band, modeling,

and time-scale transform have been proposed to remove
or reduce the artifacts in scalp electroencephalographic

recordings. In this study, a filter based on wavelet trans-
form was designed to preprocess artifacts embedded in
the electroencephalographic recordings.20 The wavelet-
based de-noising method is composed of three steps21:
(1) the wavelet transform of a signal x (t), (2) threshold-
ing the wavelet coefficients, and (3) the inverse wavelet
transform to obtain the de-noised signal. Each step is
described briefly below.

1. In this study, we used a six-level discrete wavelet
transform, using a Sym8 wavelet, which was applied
to electroencephalographic data epochs 10 s in
length. Previous work has shown that the Sym8 bet-
ter approximates the electroencephalographic wave-
form, resulting in preservation of the electroencepha-
lographic waveform after application of the filter.22

2. Optimum threshold selection is core to the success of
the wavelet-based de-noising method. Several algo-
rithms have been proposed to estimate the threshold
for wavelet coefficient-based noise removal, such as
data-adaptive wavelet thresholding, block threshold-
ing, and bayesian methods.21 In this study, we used
bayesian block thresholding because previous work
has shown that this approach outperforms the classic
data-adaptive method.23 In the bayesian approach, a
distribution is calculated based on the wavelet coef-
ficients, which captures the sparseness of wavelet
expansions. A suitable bayesian rule is then applied to
estimate posterior distribution of the wavelet coeffi-
cients.23 The criteria of the thresholds depend on
the bayesian formalism and assumed prior distribu-
tion, the details of which have been described
previously.22,24 –26

3. After filtering using the bayesian estimation method
described in step 2, the retained information, above
thresholds, was used to reconstruct a new electroen-
cephalographic series via an inverse discrete wavelet
transform. The electroencephalographic data in the
frequency bands of approximately 25–50, 12–25,
6–12, 3–6, 1.5–3, and 0.5–1.5 Hz were obtained. The
slow frequency band of 0–3 Hz was removed in this
study because artifacts derived from electrical activity
of the heart, muscles, and eyes often lie at this fre-
quency band (BIS VISTA27 (p458)). The electroen-
cephalographic data in the frequency band over 25
Hz often includes a large amount of electromyo-
graphic artifact28 and was also discarded before
further analysis. Therefore, the electroencephalo-
graphic data within the 3- to 25-Hz band was used
to calculate the AE and PE values in the following
sections.

Approximate Entropy
Considering the chaotic and nonstationary nature of

electroencephalographic data, AE29 has been applied
instead of spectral entropy30 to measure the predictabil-
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ity of electroencephalographic series. AE is based on the
similarity of events in phase space and is a favorable
method to address randomness of a dynamical system.14

The predictability of subsequent amplitude values of the
electroencephalographic signals can be quantified based
on the knowledge of the previous amplitude values. If
the electroencephalographic series is regular, the posi-
tion of a particular point can be predicted by using its
previous points, whereas in an irregular electroencepha-
lographic series, the position of the point cannot be
easily predicted. It was demonstrated that AE of electro-
encephalographic recordings could be used to quantify
the effect of anesthesia drugs on the brain activity better
than other descriptors.14 The number of previous
(lagged) points used in making the prediction is the
embedding dimension (m). The AE looks at sequences of
length m and then establishes the negative logarithmic
probability that these sequences predict a new sequence
of m � 1 points to within an error range of r, typically
set at 0.2 � SD. For a regular signal, most sequences can
successfully predict the next data points; therefore, the
AE is low. In turn, for an irregular signal, there are few
successful predictions, so the AE is correspondingly
high. The exact value of the AE (m, r, N) depends on the
values chosen for the three parameters of the statistic: N
(number of samples), m (embedding dimension), and r
(noise threshold).31 In this study, N � 1,000 points, r �
0.2 � SD, and m � 2 were selected in the light of
previous work.14

Permutation Entropy
Ordinal time series analysis is a new method to de-

scribe the characteristics embedded in a complex time
series. This method transforms a given time series into a
series of ordinal patterns each describing the order rela-
tions between the present and a fixed number of equi-
distant past values at a given time.32 Given a scalar time
series xt �t � 1,2, . . . �, an embedding procedure forms
vectors Xt �xt, xt��, . . . , xt�m�� with the embedding di-
mension, m, and the lag, �. Then, Xt can be arranged in
an increasing order. For m different numbers, there will
be m! possible order patterns, which are also called
permutations.15 To quantify and visualize the changes in
time series, Bandt and Pompe15 have proposed PE based
on the Shannon entropy. Considering each permutation
as a symbol, the vectors Xt can be represented by a
symbol sequence; the distinct number of symbols (J)
should be less than or equal to m!, namely J � m! For the
time series xt, the probability distributions of the distinct
symbols are defined as p1, . . . , pj; the PE of this time
series is defined by

Hp�m� � � �
j�1

J

pj ln pj (1)

The corresponding normalized entropy can be defined
as follows:

Hp � Hp�m� ⁄ ln�m!� (2)

The largest value of Hp is one, meaning all of permu-
tations have equal probability. The smallest value of Hp

is zero, meaning the time series is very regular. That is,
the smaller the value of Hp is, the more regular the time
series is. PE refers to the local order structure of the time
series, which can give a quantitative complexity measure
for a dynamical time series. Mathematical details of the PE
can be found in the references.15,32–34

Permutation entropy calculation depends on the selec-
tion of time interval N and embedding dimension m.
Similarly to AE, interval N was selected as 1,000 points
(data length of 10 s in this study). When m is too small
(less than 2), the scheme will not work because there are
too few distinct states. Often, for a long electroencepha-
lographic recording, a large value of m is better. How-
ever, this study concentrates on the detection of dynam-
ical changes in the electroencephalographic recording,
so too large a value of m (greater than 10) is inappropri-
ate.16 In this study, we found that m � 6 was appropri-
ate. The parameter selection of PE is addressed in
appendix 1.

Pharmacokinetic–Pharmacodynamic Modeling
The correlation between anesthetic drug effect index

and anesthetic drug concentration provides construct
validity for anesthetic drug effect monitoring.19,35 In this
study, we used a standard pharmacokinetic–pharmaco-
dynamic model to describe the relation between sevoflu-
rane concentrations and the electroencephalographic
response (measured by the PE and AE). This was done by
modeling the movement of sevoflurane from the arterial
blood (end-tidal) using the first-order rate constant, Ke0.
Briefly, the effect site partial pressure is estimated by a
first-order effect site model19:

dCeff / dt � Ke0�Cet � Ceff�, (3)

where Cet is the end-tidal concentration of the drug, Ceff

is the sevoflurane concentration at the effect site, and
Ke0 is the first-order rate constant for efflux from the
effect compartment. The Ceff is estimated by iteratively
running this above model with a series of Ke0 steps. For
each iteration, a nonlinear inhibitory sigmoid Emax curve
is fitted to the data by the following equation19:

Effect � Emax � �Emax � Emin� � �Ceff
� ⁄ �EC50

� � Ceff
���,

(4)

where Effect is the processed electroencephalographic
measure, the Emax and Emin are the maximum and mini-
mum Effect for each individual patient, and EC50 is the
sevoflurane concentration at which Effect is midway
between this maximum and minimum. � describes the
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slope of the concentration–response relation. Ke0 is de-
termined from the iteration yielding the greatest coeffi-
cient of determination (R2) for measured and modeled
electroencephalographic Effect for each patient.35 A
nonlinear inhibitory sigmoid Emax curve was fitted to the
brain (effect site) concentration–PE or –AE relation.
From the fitted curve, values of pharmacodynamic pa-
rameters describing this relation were derived, including
� and EC50. The coefficient R2 is calculated by

R2 � 1 �

�
i�1

n

�yi � ŷi�2

�
i�1

n

�yi � y��2

, (5)

where yi and ŷi are PE or AE for a given time and the
corresponding model prediction, respectively. The y� is
the average of all the measurements (PE and AE).

Statistical Analysis
The raw electroencephalographic signals were filtered

between 3 and 25 Hz and divided into epochs of 10 s
duration. For each patient, the PE and AE series were
computed and effect site concentrations (Ceff) were es-
timated with pharmacokinetic–pharmacodynamic mod-
eling. The correlations between effect site concentra-
tions and PE and AE were investigated with the model-
independent prediction probability (PK) that was
described by Smith et al.36 The PK value describes the
probability that the PE or AE predicts effect site concen-
tration. Considering the decrease of PE and AE with the
increase of sevoflurane concentration, the prediction
probability (PK) can be calculated by9

PK � 1 � ��Pc � Ptx ⁄ 2� ⁄ �Pc � Pd � Ptx��, (6)

where Pc, Pd, and Ptx are the respective probabilities that
PE or AE values and effect site concentrations are a
concordance, a discordance, or an x-only tie. In this
study, we randomly selected a pair of PE values from
before and after LOC and then determined whether this
pair of PE values correctly predicted the trend of effect
site concentration (up or down). By repeating the above
procedure 300 times, the Pc, Pd, and Ptx values were
estimated, so a PK value for each patient could be ob-
tained. The same procedure was used to deal with AE.
The details of this procedure can be found in reference
9. A PK of 1 for the electroencephalographic parameter
(PE or AE) means that the indictors can correctly predict
the estimated sevoflurane effect site concentration. Al-
ternatively, a PK value of 0.5 means that the electroen-
cephalographic parameters (PE or AE) are no better than
chance at predicting the estimated sevoflurane effect site
concentration.

The Kolmogorov-Smirnov test was used to determine
whether data sets were normally distributed. PE and AE
values during the awake state (averaged over a 10-s
epoch, 50 s before LOC for all 19 subjects) were com-
pared with values during anesthesia (averaged over a
10-s epoch, 50 s after LOC for all 19 subjects). The PE
and AE values at the awake and anesthetized states were
analyzed using the nonparametric Wilcoxon test. To
determine the changes in PE and AE as anesthesia was
deepened, mean PE and AE mean values over 10-s ep-
ochs were compared at four time points: awake (50 s
before sevoflurane delivery), anesthetic LOC (sevoflu-
rane delivery to LOC), LOC, and LOC � 50 s. The
correlation (R2) between the entropy values and the
sevoflurane effect site concentration after pharmacoki-
netic–pharmacodynamic modeling was calculated for
each patient, and the average of the correlation was
calculated for all 19 patients. This analysis was per-
formed to compare the ability of each algorithm track
sevoflurane effect site (brain) concentration. In addition,
a relative coefficient of variation (CV) (the ratio of the SD
to the mean) was used to determine the predictive per-
formance of the derived entropy estimators PE and AE
for sevoflurane effect compartment concentrations.

Results

Figure 1 shows the time course of measurement for
one patient. The electroencephalographic series during
deep anesthesia is more regular than at low anesthetic
concentrations (see the enlarged sections of electroen-
cephalographic data in fig. 1A). Figure 1B shows that PE
and AE of the filtered electroencephalographic epochs
decrease with increasing sevoflurane concentration and
then reach a plateau after approximately 3 min. It is clear
that both PE and AE track the gross changes in electroen-
cephalographic data with increasing anesthetic drug effect
(fig. 1B) and end-tidal sevoflurane concentration (fig. 1C).

To evaluate the performance of wavelet filtering to
remove artifacts in the electroencephalographic data,
the baseline variabilities of PE and AE before anesthetic
delivery were estimated by calculating the CV. The CV
values of PE and AE before wavelet filtering were 0.007 �
0.008 and 0.192 � 0.079 (n � 19), respectively. After
wavelet filtering, the CV for PE was 0.004 � 0.006,
compared with 0.059 � 0.047 for AE (n � 19). Clearly,
the difference in PE CV values before and after filtering
is smaller than the corresponding difference in AE CV
values. Assuming the difference of CV values before and
after wavelet filtering is derived from the artifacts in the
electroencephalographic recordings, these results dem-
onstrated the robustness of the PE algorithm to noise in
the electroencephalographic data.

The effect of increasing sevoflurane concentration on
AE and PE was quantified by comparing awake and
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anesthetized values across all subjects. The median (95%
confidence interval) PE values during the awake and
anesthetic epochs were 0.90 (0.88–0.91) and 0.66
(0.63–0.73), respectively; the median (95% confidence
interval) AE values were 1.24 (1.04–1.33) and 0.80
(0.66–0.87), respectively. The differences in parameter
values between awake and anesthetized states were sta-
tistically significant for both PE (P � 0.0001) and AE
(P � 0.005, Wilcoxon test). The very small 95% confi-
dence limits for PE calculated during the awake electro-
encephalographic epochs further highlights the resis-
tance of the PE algorithm to electroencephalographic

artifact. To further examine the ability of PE and AE to
differentiate awake from anesthetized states, the predic-
tion probability PK was calculated. The individual PK

value for each patient was calculated for the PE and the
AE, and the means of PK (95% confidence intervals) for
PE and AE were 0.86 (0.82– 0.89) and 0.79 (0.74 –
0.83). The difference between parameters was statis-
tically significant (P � 0.05).

Plotting PE versus AE (1,425 pairs from all patients)
revealed an approximate linear relation between PE and
AE, as shown in figure 2, demonstrating the ability of
both PE and AE to track gross changes in anesthetic
effect. Figure 3 shows the relation between the point of
LOC and PE/AE. LOC typically occurred before the rapid
decrease in PE and AE (0.830 � 0.069 [mean � SD] at
LOC for PE, compared with 1.085 � 0.23 at LOC for AE).
The variability in PE at LOC was smaller than for AE, as
shown in the above SD values. This suggests that PE may
be a more robust indicator of LOC. To compare the
changes in PE and AE as anesthesia was deepened, PE
and AE values at the awake (10-s epochs), anesthetic
LOC, LOC, and anesthetic (after LOC � 50 s, 10-s ep-
ochs) states were analyzed for each patient, and a box
plot was constructed (fig. 4). The PE values for all pa-
tients averaged 0.935 � 0.003, 0.890 � 0.041, 0.830 �

Fig. 2. Correlation of the permutation entropy and the approx-
imate entropy (r � 0.8, P � 0.004) for 19 patients.

Fig. 1. (A) An original electroencephalo-
graphic (EEG) recording from one pa-
tient. The sample interval is 1/100 s. (B)
Time course of permutation entropy (PE)
and approximate entropy (AE). The inter-
val is 10 s. (C) End-tidal sevoflurane con-
centration during the same time course
in the same patient.
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0.069,and 0.702 � 0.113 (mean � SD) in the four states,
respectively; the corresponding AE values were 1.502 �
0.062, 1.175 � 0.291, 1.085 � 0.230, and 0.785 � 0.218.
The PE and AE values decrease monotonically from the
awake to the anesthetized state; however, the root mean
squared error of PE linear fitting is 0.029, compared with
0.165 for AE.

The sigmoid dose–response relations between the PE
and AE values and the end-tidal sevoflurane concentra-
tions for all subjects are plotted in figure 5. Note that
these data do not include any electroencephalographic
burst suppression states. The main difference between
these plots is the obvious accumulation of values in the
region of low AE and low sevoflurane concentration in
the AE plot (fig. 5B). This reflects the relative suscepti-
bility of AE to artifacts in the awake state (e.g., blinks and
forehead muscle activity) and the resistance of PE to
these same artifacts.

Figure 6 shows the data fit for the sevoflurane (effect
site) concentration and the PE and AE values for the
pharmacokinetic–pharmacodynamic modeling for one
patient with an exponential function. Using the pharma-
cokinetic–pharmacodynamic model, the effect site
sevoflurane concentration can be calculated, so the re-
lation between PE and AE values and the effect site
sevoflurane concentration can be obtained. Inspection

of the individual data fits showed that the inhibitory
sigmoid Emax model approximately described the rela-
tion between the sevoflurane (effect site) concentration
and the PE and AE values. The modeled parameters are
listed in table 1, including Emax, Emin, �, Cet, EC50, Ke0,
and correlation coefficient R2. The parameter values are
similar for PE and AE, although the correlation (R2)
between the entropy values and the sevoflurane effect
site concentration was 0.89 � 0.07 (n � 19) for PE
compared with 0.60 � 0.14 (n � 19) for AE. It is worth
noting that for the case shown in figure 6, above a
sevoflurane concentration of approximately 1.7%, the PE
decreases more slowly than indicated by the fitted curve.

Discussion

In this study, the effect of sevoflurane on brain activity
was demonstrated by the PE and AE values of electroen-
cephalographic recordings. The PE and AE values de-
crease with increasing sevoflurane concentration, and
either algorithm could be used to detect gross changes in
sevoflurane effect. The variability at baseline, the predic-
tion probability, sensitivity at LOC, the correlation of

Fig. 3. Relation between the point of loss of consciousness
(LOC) and permutation entropy/approximate entropy for all
subjects. Typically, LOC occurred at slightly lower permutation
entropy and approximate entropy compared with awake base-
line. (A) Permutation entropy versus LOC; (B) approximate
entropy versus LOC.

Fig. 4. Box plots of the (A) permutation entropy (PE) and (B)
approximate entropy (AE) values at the awake (A), anesthetic
loss of consciousness (B), loss of consciousness (C), and anes-
thetic loss of consciousness � 50 s (D) states. The lower and
upper lines of the “box” are the 25th and 75th percentiles of the
sample, the distance between the top and bottom of the box is
the interquartile range, and the line in the middle of the box is
the sample median. Outliers (plus sign) are cases with values
that are more than 1.5 times the interquartile range. The
notches in the box are a graphic confidence interval (95%)
about the median of a sample.
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both parameters and its related measures of anesthetic
drug effect on the electroencephalogram (pharmacoki-
netic–pharmacodynamic) were tested; the statistical an-
alyzes demonstrate several advantages of PE over AE.

First, PE is less sensitive to “artifacts” in the electroen-
cephalographic signal during the awake state. This was
reflected in the lower CV for PE and in the higher
correlation values for the modeled relation between
sevoflurane effect site concentration and PE. Second, PE
provides a more robust estimate of the point of LOC.
Although both PE and AE could distinguish between the
awake and anesthesia states (as shown in fig. 4), the
variability of PE at the moment of LOC was smaller than
AE, and PE monotonically decreased from awake to LOC.
The greater predictive value of PE for differentiating
subject state was also reflected in the slightly higher PK

value for PE compared with AE. Third, the PE is more
correlated to the sevoflurane effect site concentration.
The correlation (R2) in table 1 shows the PE can accu-
rately reflect the effect of the sevoflurane effect site
concentration on brain activity. Finally, PE calculation is
simple, fast, and robust. PE calculation simply considers
the order relation between the values of a time series
instead of the values themselves; the value of PE is based
on the distribution of ordinal patterns. Using the method
shown in figure 1B to process an electroencephalo-
graphic trace of 10 min requires less than 258 s for PE on
a P4 1.6-GHz personal computer including wavelet fil-
tering, compared with 372 s for AE. This case analysis
shows that the PE method is more readily amenable for
use in a real-time electroencephalographic monitor.

Approximate entropy is based on the similarity of
events in phase space and is a favorable method to
address randomness of a dynamical system. Because AE

specifies a noise threshold, it may be better than spectral
entropy in the quantification of complexity of electroen-
cephalographic recordings.14,37 The disadvantage of AE
is that it is heavily dependent on the record length and
is often lower than expected for short records. Another
disadvantage is that AE lacks relative consistency.31 PE is
a new statistical parameter that also quantifies the
amount of regularity in electroencephalographic data.
The first step of PE calculation is to transform an elec-
troencephalographic series into a series of ordinal pat-
terns, which implies that a nonstationary series is trans-
formed to a nearly stationary ordinal series. As a result,
PE is less affected by the amplitude of the electroen-
cephalographic data. Furthermore, the PE should be less
sensitive to noise embedded in electroencephalographic
recordings, which was confirmed by the findings of this
study (appendix 2). On the other hand, the correlation
coefficient of 0.8 between the PE and AE shows that the
PE can be applied to quantify the complexity of electro-

Fig. 5. Relation between permutation entropy or approximate
entropy and the end-tidal sevoflurane concentration. (A)
Sevoflurane concentration versus permutation entropy; (B)
sevoflurane concentration versus approximation entropy.

Fig. 6. Effect (vertical axis) versus sevoflurane effect compart-
ment concentration (horizontal axis) in the patient with the
greatest coefficient of determination R2 for permutation en-
tropy and approximation entropy. (A) Permutation entropy
versus effect site sevoflurane concentration; (B) approximation
entropy versus effect site sevoflurane concentration.
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encephalographic signals instead of AE. These factors
suggest multiple possible applications of this new tool
for the analysis of electroencephalographic data,33,38 as
suggested by case studies successfully separating con-
sciousness from unconsciousness during anesthesia17 and
indicating increases and decreases in anesthetic level.18

At surgical levels of anesthesia, some high-frequency
artifacts such as electromyographic may interfere with
the electroencephalographic PE values. The current data
cannot reveal the details on this issue, which should be
discussed in future work. From a practical viewpoint,
this is a difficult issue because it relates to the identifi-
cation of artifacts embedded in electroencephalographic
series. The PE description of the burst suppression elec-
troencephalographic pattern is another possible prob-
lem. With increasing anesthesia concentration, the elec-
troencephalographic waveform changes into a burst
suppression pattern, resulting in an increase in PE (fig.
7). Clearly, the AE of burst suppression better reflects
very deep anesthesia than PE in this case, although
further work is required to draw firm conclusions. The
PE method may require a burst suppression ratio com-
ponent, similar to that used in the BIS monitoring sys-
tem. The phase relations between the component waves
of different frequencies that make up the composite
electroencephalogram are considered in the BIS. In fact,

the phase information is related to the ordinal pattern in
the electroencephalographic data, so the PE is similar to the
BIS in this respect. At low concentrations of sevoflurane,
such as 1–2%, the PE approximates to the plateau (see the
end of figs. 1B and C), which is similar to the BIS.39 There-
fore, PE does not accurately track all levels of anesthesia.

In conclusion, when comparing the performance of PE
and AE as measures of anesthetic drug effect on the
electroencephalogram, it was found that PE performed
better than AE during sevoflurane anesthesia on a num-
ber of levels: the baseline variability of PE was lower
than that of AE; the prediction probability PK was higher
than AE; and pharmacokinetic–pharmacodynamic mod-
eling of PE and AE versus the sevoflurane (effect site)
concentrations revealed that the correlation (R2) be-
tween the PE values and the sevoflurane effect site con-
centrations is higher than AE. These differences largely
reflect the resistance of PE to artifact in the electroen-
cephalographic recording. Furthermore, the fast compu-
tation of PE ensures that this new measure can be
applied to clinical real-time on-line monitoring of anes-
thetic drug effect. It is suggested that PE may be an
excellent candidate for designing a monitor system for
depth of anesthesia when integrated with other dispar-
ate descriptors of the electroencephalogram.

Appendix 1: Parameter Selection of
Permutation Entropy

The parameter selections of PE should be discussed. The calculation
of PE depends on the length of the epoch (N) and embedding dimen-
sion (m), m! � N. In Bandt and Pompe,15 the authors recommend m �
3 , . . . , 7. It was found that m � 3 and 4 may still be too small and a
value of m � 5, 6, or 7 seems to be the most suitable for an electro-
encephalographic series.16

Table 1. Pharmacokinetic–Pharmacodynamic Parameters for
PE and AE

Parameter PE AE

Emax 0.93 � 0.01 1.40 � 0.14
Emin 0.62 � 0.06 0.62 � 0.14
� 4.51 � 4.08 7.79 � 7.14
EC50 1.24 � 0.40 1.73 � 0.63
t½Ke0, min 0.84 � 0.33 0.54 � 0.22
R2 0.89 � 0.07 0.60 � 0.14

Data are presented as mean � SD.

AE � approximate entropy; EC50 � concentration that causes 50% of the
maximum effect; Emax � encephalographic parameter value corresponding to
maximum drug effect; Emin � encephalographic parameter value correspond-
ing to minimum drug effect; PE � permutation entropy.

Fig. 8. Effect of the parameter selection of permutation entropy
on the prediction probability PK at the awake state. (A) Relation
between the embedded dimension m and PK at the length of
1,000 samples (10 s) of electroencephalographic data. (B) Rela-
tion between the different length of samples and PK at the
embedded dimension m � 6.

Fig. 7. Permutation entropy (PE) and approximate entropy (AE)
of burst suppression. (A) An original electroencephalographic
recording with a burst suppression pattern. (B) PE at the awake,
light anesthetic, and deep anesthetic states. PE increases at the
duration of burst suppression. (C) AE at the awake, light anes-
thetic, and deep anesthetic states.
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In reference 39, prediction probability (PK) between the AE and
effect site concentration was used to assess the parameter selection for
AE calculation. A similar approach was used to the parameter selection
for PE calculation. Figure 8 shows how varying the embedded dimen-
sion m and length of epoch N affect the PE calculation at the awake
state. Given the embedded dimension m � 6, the prediction probabil-
ity (PK) is the biggest when the length of the epoch is 1,000 (10 s) (fig.
8A), because 7! � 1,000, the Somers d statistic is set as zero, so PK �
0.5 for m � 7, 8, and 9. Figure 8B shows that the prediction probability
(PK) at the embedded dimension m � 6 is the biggest for N � 1,000 (N �
300 , . . . , 1,200) samples. These results suggest that N � 1,000 and
m � 6 are appropriate for PE calculation in this study; the optimal
selection could be discussed in the future work.

Appendix 2: Robustness of Permutation Entropy

To show the robustness of PE, a simulation study was created by
following reference 40. Given a gaussian white noise series of 12,000
samples at the sample rate of 100 Hz (mean � 0, SD � 1), the following
artifacts were added to generate a pseudo-electroencephalographic
series: (1) a sine wave of 2 Hz (similar to eye movement) at the
duration of 10–40 s, (2) a square wave at the duration of 60–90 s, and
(3) an impulse at 100 s. The same parameters were selected for
calculation of PE and AE. As shown in figure 9, the PE holds steady at
approximately 0.93, but the AE varies from 1.45 to 1.69. It is clear that
the AE is less sensitive to the artifacts.
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Fig. 9. Robustness of permutation entropy with a simulation
study. (A) Pseudo-electroencephalogram (EEG) (a gaussian pro-
cess with a sine wave, a square wave, and an impulse). (B) The
permutation entropy (PE) and approximate entropy (AE) value
of the pseudo-EEG.

456 LI ET AL.

Anesthesiology, V 109, No 3, Sep 2008

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/109/3/448/656338/0000542-200809000-00014.pdf by guest on 19 April 2024


