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Observations on Surgical Demand Time Series

Detection and Resolution of Holiday Variance
Ian C. Moore, M.A.Sc.,* David P. Strum, M.D.,† Luis G. Vargas, Ph.D.,‡ David J. Thomson, Ph.D., P.Stat., C.Stat., P.Eng.§

Background: Surgical scheduling is complicated by both nat-
urally occurring and human-induced variability in the demand
for surgical services. Surgical demand time series are decom-
posed into periodic, lagged, and linear trends with frequent
occurrences of nonconstant variations in mean and variance.
The authors used time series methods to model surgical de-
mand time series in order to improve the scheduling of scarce
surgical resources.

Methods: With institutional approval, the authors studied
47,752 surgeries undertaken at a large academic medical center.
They initially extracted periodic information from the time
series using two frequency domain techniques: the harmonic F
test and the multitaper test. They subsequently extracted lagged
(correlated) behavior using a seasonal autoregressive inte-
grated moving average model. Finally, they used moving vari-
ance filters on the residuals to identify variance in the time
series that coincided with major US holidays.

Results: Linear terms such as periodic cycles, trends, and
daily and weekly lags explained 80% of the variance in the raw
time series. In the residuals, the authors used moving variance
filters to detect nonlinear variance artifacts that correlated with
surgical activities on specific US holidays.

Conclusions: After extracting linear terms, the remaining
variance was attributable to a combination of nonlinear and
unexplained random events. The authors used the term holiday
variance to describe a specific nonlinear disturbance in surgi-
cal demand attributable to statutory US holidays. Resolving
these holiday variances may assist in management and sched-
uling of scarce surgical personnel and resources.

TIME series problems are ubiquitous, with growing im-
portance in recent years. Although time series analyses
are in the domain of statisticians, these analyses are most

commonly practiced by nonstatisticians and managers.
The development of times series analyses has been facil-
itated by evolution of reliable easy-to-use software pack-
ages and consequent on huge recent gains in computing
power. Large time series data sets are continuously
emerging not only in econometrics, but also in the bio-
medical sciences and hospital management.1

Healthcare institutions operate in austere fiscal envi-
ronments. They are stressed by overwhelming demands
for surgical services simultaneously with the reality of
insufficient resources caused by a combination of
globalization and demographics of an aging popula-
tion. Surgical scheduling is often complicated by vari-
ability inherent in the stochastic demand for surgical
services. Surgical services might be better managed
with improved methods to forecast and quantify alter-
ations in surgical demand and thus allocate capacity
more appropriately.

Time series may be analyzed in both the time and the
frequency domain. The concept of data in the time
domain is trivial to understand, whereas many people
have difficulty visualizing the formal mapping between
time and frequency domains. This mapping is termed the
Fourier transform, where a mathematical transforma-
tion is made on data to make observations in the fre-
quency domain. Analyses in the frequency domain usu-
ally provide new insights about the periodic behavior of
the data under investigation. As an example, weekly and
abnormal dependencies are well known, but detection
of subtle periodicities requires frequency domain analy-
sis. In this article, we used a combination of time and
frequency domain methods.

Quantification and prediction of trends in surgical de-
mand are important and technically challenging. Ad-
vanced time series methods2–8 are complicated combi-
nations of modeling and filtering using a mixture of
linear and nonlinear models that may be applied in both
the frequency and time domains. Surgical demand time
series are comprised of linear, autocorrelated (lagged),
and periodic terms with frequent nonconstant variations
in mean and variance.

Our broader goal was to identify, describe, and under-
stand sources of variability inherent in time series origi-
nating from production and delivery of surgical services
at a large academic medical center. Identifying these
variances may assist in scheduling of important person-
nel and scarce surgical resources. Our specific objective
was to identify and quantify artifacts in our time series
attributable to holiday behavior.
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Materials and Methods

To study surgical demand time series, we analyzed all
surgeries performed at a large academic health sciences
center over a 6-yr period from 1989 to 1995.9–12 Use of
anonymous patient records was approved by the human
subjects review committee of the institution that col-
lected the data.

Variables in our data set included total time (defined as
the time from entry into the operating suite until arrival
in the recovery room), surgical time (defined as the time
from incision to closure of the surgical wound), age,
American Society of Anesthesiologists physical status,
type of anesthesia, Current Procedural Terminology
codes, and emergency status. Our data consisted of
47,752 individual surgeries collected over 2,191 days
with an average of 21.8 surgeries per day, with surgical
procedure times recorded in universal time with an
accuracy of �5 min. Surgical schedules were parameter-
ized using Allegro Common LISP (Franz Inc., Oakland,
CA), and total times and surgical times were aggregated
daily. We estimated apparent demand for surgeries as
total times aggregated daily to produce a surgical de-
mand time series.

To initially better understand our time series, we ex-
amined graphical dependent variable and box plots. As-
suming that the recording errors were independent, the
mean of the raw aggregate time series was 58.8 h, with
an SD of 27.0 h.

Surgical demand time series are aggregates of linear
(i.e., periodic, trend, lagged) and nonlinear (i.e., noncon-
stant variance) terms. Beginning with the linear ele-
ments, we subtracted obvious periodic and lagged (cor-
related) elements sequentially leaving a residual. We
studied these nonlinear effects of holiday variance and
detail these analyses below in the order that they
occurred.

The appendix describes terminology, statistics, and
processes used in our time series analyses. We ab-
stracted these descriptions from the body of the article
to increase readability for clinicians while maintaining a
level of detail more suitable for a technical audience.

Statistics
We used the following statistical tools in analyzing the

surgical demand time series: graphical dependent vari-
able plot, histogram, box plots, multitaper spectral esti-
mates, harmonic F test, seasonal autoregressive inte-
grated moving average (ARIMA) model, autocorrelation
function, partial autocorrelation function, cumulative re-
sidual spectrum, quantile–quantile plots, and a moving
sample variance filter. In the next section, we illustrate
our results using these tools.

Linear Effects: Periodic Components
To model and detect periodic artifacts in the data, we

computed a multitaper spectral estimate (appendix) of

the data (fig. 1). For example, if we see a distinct spike
at 0.5 cycles a week in a spectral estimate, we know
that there is a 14-day cycle. With the aid of a harmonic
F test (appendix), we determined the number of sta-
tistically significant period detections in the time se-
ries using three confidence level thresholds: 98, 99,
and 99.5% (table 1). Of the periods detected, the three
strongest, as seen in the multitaper spectrum, were
derived from the weekly 7-day cycle and its first two
harmonics.

These periods were removed from the data using the
following procedure:

● The harmonic F test was computed from the data.
● All Fourier transform coefficients of the data set corre-

sponding to those F statistics that exceeded the null
hypothesis 99% confidence were retained.

● Periodic data elements from the coefficients were re-
constructed using a nonperiodic Fourier series esti-
mate of the time-varying mean:

ût � �
j�0

J

âj cos(2� fjt) � b̂j sin�2�fjt�
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Multitaper Spectral Estimate of Surgical Demand

Fig. 1. Multitaper spectral estimate (bandwidth 6.5, 11 discrete
prolate spheroidal sequence tapers) of the daily cumulative
surgical demand over 6 yr starting July 1, 1989. The rectangular
“bumps” and the typical responses to periodic effects are 1.0,
2.0, and 3.0 cycles/week and are explained by the periodicity
from the week. However, the period near 1.4 cycles/week does
not have such a simple explanation.

Table 1. Sensitivity to Choice of Harmonic F Statistic
Threshold (NW � 6.5, K � 11)

Nominal significance level, % 98 99 99.5

F statistic threshold 4.79 5.85 6.99
Number of detections 83 54 30
Expected 44 22 11

K � number of discrete prolate spheroidal sequences; NW � bandwidth of
the discrete prolate spheroidal sequence.
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as found in Chatfield,3 where ût represents the peri-
odic reconstruction, J represents the number of signif-
icant terms identified by the F test, and fj represents
the corresponding frequencies. The âj, b̂j coefficients
represent amplitude estimates of the cosine and sine
terms, respectively; these were derived by the ex-
pected value calculations that aid in the calculation of
the harmonic F test as found in Thomson.8

● ût was subtracted from the data used in the first step
and repeated all the above until all F statistic readings
were below the 99% significance threshold. The effect
of choosing a low significance threshold (i.e., 90%) and
subtracting false detects creates large divots in the
residual spectrum. On the other side, choosing a sig-
nificance threshold that is too high (i.e., 99.999%) will
run the risk of failing to detect many important cycles
in the data. Therefore, our 99% significance threshold
was chosen based on the relative flatness of the resid-
ual spectrum.

Before removing these periodic effects, a histogram
showed that the distribution of our raw data was bi-
modal, with the lower mode attributed to weekends and
the upper mode attributed to weekdays. Interestingly, this
bimodal effect was reduced to a single mode after the
periodic background was subtracted. These periodic
terms are important because, cumulatively, they account
for approximately 80% of the total variance. Moreover,
unlike the short-term autocorrelation effects to be de-
scribed next, these periodic effects can be used to pre-
dict the series several months in advance. These longer-
term predictions will be the subject of future research.

Linear Effects: Lagged (Correlated) Components
We say a time series is lagged or autocorrelated when

demand on a given day is correlated with the demand
from any previous day. We detected autocorrelation us-
ing lagged variables and a regression on the data from a
given day on data from previous days. To detect lags,
we used a partial autocorrelation function, autocorre-
lation function, cumulative residual spectrum, and
quantile– quantile plot to identify the order of moving
average, autoregressive and differences to construct
an ARIMA(1,1,1) � (1,0,1)7 model.

To study lagged behaviors in the surgical demand, we
filtered the data to remove serially correlated artifacts by
using a seasonal ARIMA(p,d,q) � (P,D,Q)s model (appen-
dix) on the nonperiodic residuals; we determined to use
p � 1, d � 1, and q � 1 parameters, seasonal parameters
P � 1, D � 0, and Q � 1 with a seasonal differencing of
s � 7. We used the seasonal ARIMA model to identify
and remove sources of variation that we believed were
due to lagging of surgical demand caused by day-to-day
deferral of nonurgent surgeries.

Nonlinear Effects: Holiday Variance
After the extraction of linear artifacts, we used vari-

ance filters to identify and analyze nonlinear variance in
the residuals attributable to statutory holidays. We used
a nonweighted moving variance filter initially because it
is simple. We compared results from the nonweighted
filter with results using a discrete prolate spheroidal
sequence (DPSS) weighted moving variance filter we
believed would exhibit less bias in statistical estimates.
Averages of these filtered results were taken over each of
the 6 yr. We used this approach to identify variance
attributable to specific statutory US holidays.

Results

Examination of a dependent variable plot (figs. 2A–C)
illustrates the nature of the time series in which the
human eye has difficulties identifying and resolving
trends in the raw data. We illustrated the raw data
superimposed with the reconstructed periods over a
2-month stretch for both the least (fig. 2A) and most
(fig. 2B) volatile extremes of surgical demand during
the first year. Histograms of the weekdays and week-
ends revealed two almost nonoverlapping modes, the
first attributed to weekends and the second attributed
to weekdays.

Figure 3 illustrates heterogeneous means and variances
of the surgical demand time series summarized by day of
the week. The mean and SD of the work weekday time
series were 72.7 and 17.2 h, respectively; the mean and
SD of the weekend time series were 29.9 and 10.1 h,
respectively. The outliers (low) on Mondays and Fridays
exceeded similar outliers in the mid week and represent
holiday behaviors associated with “long weekends.”

Linear Effects: Periodic Components
With the aid of the harmonic F test, we determined

there were 83 periods in the time series with a confi-
dence level of 98%, 54 periods with a confidence level of
99%, and 30 periods with a confidence level of 99.5%
(table 1). Of these detected periods, the three strongest,
as clearly seen in the multitaper spectrum at 7, 3.5, and
2.3 days, respectively, are derived from the weekly 7-day
cycle and its first two harmonics (fig. 1). Seventy-six
percent of the variance in the raw data was attributed to
the 54 periodic elements that were above the 99%
threshold; for the most significant periodic elements, see
table 2. Table 1 highlights that the expected number of
detections reflects the fact that there are the same num-
ber of degrees of freedom in the time and frequency
domains. Therefore, a test is made at each frequency,
and for the 99% significance level we expected 22 de-
tections and observed more than twice that number.
Examination of the box plot in figure 3 illustrated heter-
ogeneous variations in mean and variance in the raw
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data. In contrast, box plots for the raw data after extrac-
tion of the periodic and lagged linear artifacts (fig. 4)
indicated a nearly stationary time series with relatively
homogeneous mean and variance. Statistical analyses of
the residuals after extraction of the linear artifacts (fig. 5)
indicated the success with which these artifacts were
removed.

Because much of the variance in our time series was
explained by periodic components, the workweek
and annual and semiannual cycles were expected.
Excluding these, there remain many statistically highly
significant components that do not have trivial expla-
nations (table 2).

Linear Effects: Lagged (Autocorrelated) Components
We used a seasonal ARIMA model to remove lags and

linear trend behavior from the post–periodic extracted
residual. Nearly 4% percent of the variance in the raw
data were attributable to linear trend and lagged ele-
ments. After seasonal ARIMA extraction, the statistics of
the residuals fall within the confines of the SE thresholds
for the autocorrelation function, partial autocorrelation
function, and cumulative residual spectrum (fig. 5). A quan-
tile–quantile plot indicated the post–seasonal ARIMA ex-
tracted residuals were normally distributed except for a
heavy left tail.
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Fig. 2. Fitted estimates of surgical de-
mand. (A) Periodic fit during the most
volatile period in the initial year, Novem-
ber 1 to January 1, 1989. (B) Periodic fit
during the least volatile period in 1990,
February 1 to April 16. (C) Linear fit dur-
ing the first 2,000 days starting July 1,
1989. Trend and periodic trends, as
shown here, are important to modeling
and predicting surgical demand.
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Fig. 3. Box plots for each day of the week of raw surgical
demand (waist � median, box � 2 SD, crosshatch � 3 SD,
outlier above 3 SD). Box plots indicate a nonstationary time
series heterogeneous in both mean and average variance.

Table 2. Highly Significant nontrivial Frequencies Derived
from the Harmonic F Tests

Frequency,
cycles/wk

Period,
days Label

Significance
Level

One-sided
Amplitude, h

1 2.0000 3.50 W 1.0000000 9.48
2 1.0000 7.00 W 1.0000000 12.43
3 3.0000 2.33 W 0.9999982 1.38
4 0.0192 365.00 A 0.9999978 2.47
5 3.4201 2.05 0.9999115 0.70
6 0.8435 8.29 0.9998000 0.74
7 0.5351 13.08 0.9998000 0.82
8 1.3642 5.13 0.9997000 0.88
9 1.5799 4.43 0.9996000 0.78

10 1.3259 5.27 0.9995000 0.58
11 0.3451 20.29 0.9994000 0.69
12 0.8658 8.08 0.9993000 0.78
13 0.7268 9.63 0.9992000 0.70
14 1.0383 6.74 0.9991000 0.83
23 0.2492 28.09 L 0.9970000 0.68

A � annual periodic event; L � periodic event possibly due to lunar effects;
W � weekly periodic event.
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Nonlinear Effects: Holiday Variance
To study the behavior of nonlinear variance clusters, a

weighted moving variance filter was used on the data
after extraction of the linear terms. The horizontal lines
in figure 6 indicate the lower 5% and upper 95% thresh-
olds of a gaussian random sample for data yielding the
same SD as our post–seasonal ARIMA extracted residual.
These results indicated volatile surges in surgical de-
mand directly correlated with every major US holiday.
We coined the term holiday variance to describe these
repeated discrete disturbances in variance that coin-
cided with statutory holidays. Using a nonweighted vari-
ance filter, we were able to resolve these disturbances in

only modest detail. In contrast, when using DPSSs13 as
weighting coefficients, we observed increased resolution
of holiday activity. This is well illustrated during the Christ-
mas holiday period, as the results in figure 7 resolve holiday
variance into Christmas and New Year’s. Contrast this with
the relatively poor statistical properties of the unweighted
estimator used in figure 6 that biased holiday activity
stretched across the entire Christmas week.

Discussion

Our analyses indicated significant variance in the time
series attributable to periodic, linear trend, lagged, and
holiday disturbances in surgical demand. Initial spectral
estimates indicated that surgical demand was strongly
periodic. The majority of these periodic behaviors were
attributed to midweek highs and weekend lows. How-
ever, reality seems to be more complex than this limited
view would indicate. We speculate two major separate
processes inherent in our time series. The first is a
stochastic process running throughout the entire 7-day
week, consisting of random demand for emergencies
that is plainly visible on the weekends. Superimposed on
the underlying stochastic processes is a highly periodic
elective weekday surgical demand, driven in large part
by the accumulation of surgical specialty demand per-
formed in reserved specialty block time. Within the
detected periodic activity may be additional unexplained
natural and socioeconomic phenomenon. Examples may
include lunar cycles near 28 days or biweekly payroll
disturbances in additional to other subtle periodic struc-
tures within the healthcare system that we have yet to
identify. The heterogeneous means and variances in the
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Fig. 4. Box plots for each day of the week after extraction of
seasonal autoregressive integrated moving average ARIMA(1,1,1)
� (1,0,1)7 fit, mean and periodic cycles. Box plots indicate a nearly
stationary time series relatively homogeneous in mean and aver-
age variance.
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Fig. 5. Analysis of residuals after extrac-
tion of seasonal autoregressive integrated
moving average ARIMA(1,1,1) � (1,0,1)7

fit, mean and periodic artifacts. (A) Auto
correlation function (ACF). (B) Partial
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mulative residual spectrum. (D) Normal
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the nonlinear behavior of the lower left
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time series were highly nonlinear and therefore difficult
to analyze using more traditional statistical methods
without encountering potentially serious statistical bias.

The seasonal ARIMA model confirmed a gradual linear
upward trend indicating a slow overall growth in surger-
ies throughout the studied period. In addition, signifi-
cant lag components were identified at 1 and 7 days. A
significant lag 7 indicates that surgical demand on any
given day is strongly influenced by activity that occurred
on the same weekday of the preceding week. An impor-

tant event such as a traffic accident might be an example
of behaviors leading to a lag 1. The unexpected casual-
ties from the accident could overwhelm the emergency
capacities of local hospitals, and surgeries would have to
be reordered according to urgency. This reordering of
surgeries would delay less urgent surgeries to the follow-
ing day. Our analyses indicate that lagging of surgical
cases happens daily and weekly; whatever is not done on
time is pushed to the following day or, alternately, the
following week. Weekly lagging may be attributable to
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delaying surgeries from repeating weekly blocks of time
reserved for surgeons to the next available surgeon-specific
opportunity. Major events capture attention; however, our
results illustrate that mundane but significant lagging of
surgeries occurs on a routine daily and weekly basis.

The DPSS weighted moving variance estimates (fig. 7)
indicated that every peak, in the filtered squared resid-
ual, represents a specific US holiday; we termed this
holiday variance. We can observe that these variance
estimates represent a substantial improvement in resolu-
tion relative to using a nonweighted moving sample
variance filter estimate, illustrated in figure 6.

Previous studies of similar surgical demand time series
used different analyses methods. Williams et al.14 ana-
lyzed times for a single surgical procedure (knee arthro-
scopy) using interrupted time series methods (one-way
analysis of variance or linear regression) and showed
shorter surgical times with regional anesthesia. How-
ever, these authors did not analyze continuous diverse
surgical demand, did not address issues of statistical bias
associated with complex time series and linear methods,
and explained less than 30% of variance in the depen-
dent variables, all factors that might affect the potential
of these methods to predict the future.

Dexter et al.15–17 analyzed surgical demand time series
similar to our own to predict staffing requirements. These
authors used boxcar averaging methods and predicted staffing
requirements for weekdays, weekends, and holidays.15–17 The
boxcar averaging periods ranged from 4 weeks to as short
as 12 or 24 h. These investigators assigned confidence
intervals for their estimates and related the number of
surgical cases started to the hours of surgical service pro-
vided using discontinuous time series. However, these au-
thors did not report estimates of variance explained by the
dependent variables and did not study the periodic ele-
ments that, in our studies, explained much of the variance.

In contrast, we studied a continuous surgical demand
time series heterogeneous in mean and variance using
methods that identified linear trends, lags, holiday vari-
ance, and periodic elements. We identified periodic el-
ements not previously recognized in surgical demand
time series, including short- and long-term periodic ele-
ments. Using these methods, we detected 54 periodic
terms at the 99% detection threshold that explained a
large portion of variance (76%) in the dependent vari-
able. Most of the first dozen of these periodic terms have
important amplitudes greater than 0.7 h. Boxcar averag-
ing is undersampled in “4-week” blocks and would hide
many of the periodic elements we detected with periods
less than 1 month and might alias longer periods. We
described a method of time series analyses capable of
fine-grained studies and improved fidelity relative to pre-
vious studies using similar surgical time series. Further
development of these techniques should improve pre-
dictions of surgical demand with a potential for im-
proved capacity planning and staffing models.

Limitations
To remove the linear trend in our model, we used first

differencing within an ARIMA model (d � 1). Had we
instead used a least squares regression model to remove
the linear trend, we might have improved even further the
accuracy of estimate of the trend. We tried dividing the
raw data by trend, but this resulted in a decreasing
variance.

We made empirical comparisons only between non-
weighted and DPSS weighted moving variance filter es-
timates. Detailed analytical comparisons were beyond
the scope of current article and will be the subject of
future research.

It will be apparent to many readers that apparent
demand is not the actual daily demand for surgical ser-
vices; rather, it represents true demand censored by
scheduling policies in effect at the institution that pro-
duced the services. Predictions based on true surgical
demand would likely improve prediction accuracy;
nonetheless, apparent demand is the only demand met-
ric most institutions record, and we assume that over
time, apparent demand represents a lagged but close
approximation of true demand. We believe, however,
that our methods would also be applicable to data series
representing uncensored true demand. In this article,
whenever we refer to “demand,” it is apparent demand
we actually refer to.

Although we have removed the periodic and ARIMA
artifacts from the data, we propose in future research to
also remove the holiday variance in a statistically justified
manner. Pending further research, we propose to incor-
porate these artifacts into a prediction model to better
predict surgical demand in the operating rooms.

Conclusions

Our results suggest that demand for surgical services is
highly periodic. The main cycles are the obvious one,
two, and three cycles per week; however, there are
several others in addition. The data had strong daily and
weekly lags, suggesting that surgeries are routinely de-
ferred to the next day or the next surgeon-specific block
time, which is often in the same weekday of the subse-
quent week. There was also a gradual upward linear
trend that indicated that demand for surgical services at
the hospital increased steadily over the study period.

Linear effects, including periodic cycles, trends, and
daily and weekly correlations, explained 80% of the
variance in the raw data. The remaining variance was
attributable to a combination of nonlinear and unex-
plained random events. We were able to identify surges
of volatile activity correlated to statutory US holidays.
We coined the term holiday variance to describe these
disturbances in surgical demand. Resolving these vari-
ances may ultimately improve scheduling of personnel
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and scarce surgical resources. Poor scheduling or capac-
ity allocation can lead to suboptimal utilization and staff-
ing of costly operating rooms.

The authors thank Gerard Bashein, M.D., Ph.D. (Professor of Anesthesiology,
University of Washington, Seattle, Washington), for his assistance with the
manuscript.

Appendix: Technical Details

This appendix describes terminology, statistics, and processes used
in our time series analysis. We abstracted these descriptions from the
text of the article to increase readability for clinicians while maintain-
ing a level of detail more suitable for a technical audience.

Chi-square Distribution
The chi-square distribution,18,19 denoted by �2, is one of the most

widely used distributions in statistical significance tests and plays an
important role in making statistical inferences; an example of its use is
in figure 6. If xi are n independent, gaussian-distributed random vari-
ables of mean � and variance �2, then

z � �
i�1

n �xi � �

� �2

is chi-square distributed, and we write z � � n
2, where n is the degrees

of freedom. We used this distribution to construct the thresholds in
the harmonic F test. We used it to test whether the residuals were
normally distributed, after removal of time series artifacts (fig. 6).
The square of a normally distributed data set is, by definition, a
chi-square distribution.

Discrete Prolate Spheroidal Sequences
Discrete prolate spheroidal sequences13 (DPSSs) are a family of se-

quences discovered by David Slepian, Ph.D. (1923–2007), in 1978 at Bell
Laboratories (Murray Hill, NJ) which, using his notation, are the eigenvec-
tors vn

(k ) of order k, dimension N, and bandwidth W of the following
algebraic eigenvalue equation:

�
m�0

N�1
sin�2�W(n� m)�

n� m
vm
�k��N, K�� �k�N, W�vm

�k��N, K�.

The importance of DPSSs lies in the fact that they have maximum
energy concentration in frequency given any sequence defined on a
finite time interval; i.e., they define the famous Heisenberg uncertainty
principle for finite amounts of sampled data. DPSSs play an important
role in the statistical robustness of multitaper spectral estimates (fig. 1)
and as weighting coefficients in our variance filter estimates (fig. 7).

Multitaper Spectral Analysis
Although there is admittedly a conceptual threshold to understand-

ing the frequency domain quantities, many problems are significantly
simpler in the frequency domain than they are in the time domain.
Spectral analysis allows us to study the distribution of power (including
the amplitude of periodic components) of a data set in the frequency
domain. A band-limited function can not be time-limited, as Claude
Shannon indicated in a famous landmark article20; therefore, we are
left with the task of estimating a band-limited function in the frequency
domain given a finite time series sample set. The Fourier transform6 is
an integral part of estimating the spectrum of a data set that is divided
into magnitude and phase responses. Spectrum estimation relates to
the magnitude response of our time series in the frequency domain.

When selecting a spectral estimator for a given data set, we factor in
considerations of variance, resolution, spectral leakage, and bias. The
simplest of all spectral estimators is the periodogram3,6,21

Sp�w� � �
����N�1�

N�1

r�p����e�iw�,

where r(p)(l) is an autocorrelation sequence conventionally esti-
mated as

r�p���� �
1

N �
n�1

N����

xnxn����.

Unfortunately, periodogram estimates are one of the poorest of
spectral estimators due to both statistical bias and variance8,21; the
corresponding autocovariance estimate inherits these problems. To
minimize this, a multitaper spectral estimate is an excellent choice
because of its statistical robustness. Technical explanations of the
multitaper technique are beyond the scope of this article and are
detailed elsewhere by Thomson,8 section V-6 and figure 6 of Thomson
et al.22

Harmonic F Test
We used a harmonic F test to aid in removal of the periodic com-

ponents from our data set. The harmonic F test8 is the ratio of variance
explained by the assumed periodic component at frequency f to that
variance remaining in the residuals. We applied the harmonic F test to
our time series while using the multitaper simultaneously to confirm
periodic trends. We used the F test to identify periods, connected
these to a nonperiodic Fourier series (done with a fast Fourier trans-
form6) to form a periodic reconstruction, and subtracted this from the
data. Strong periodic components tend to mask weaker ones; there-
fore, this process was repeated recursively until all F statistics tested
below the 99% significance level.

Seasonal Arima Model
We used a seasonal ARIMA model to study stationary behaviors in

residuals after extraction of periodic artifacts. Seasonal ARIMA models
are covered in numerous texts,2–5,7 so we give only a summary here.
We assume zt is a purely random process sampled from a gaussian
distribution with mean zero and variance �(z)

2. Under this assumption,
an ARMA model can be summarized as a moving average (MA) process
xt of order q, MA(q) of the form,

xt � 	0zt � 	1zt�1 � Ê � 	qzt�q

where 	i are constants and the Zs are scaled so that 	0 � 1. Using
the backshift operator Bzt � zt�1, we can rewrite the above ex-
pression as

xt � �	0 � 	1B � Ê � 	qB
q�zt � 
�B�zt.

Then process xt is said to be an autoregressive (AR) process of order p if

zt ��1 � �1B � Ê � �pB
p�xt � ��B�xt

We can express an AR process of finite order as an MA process of
infinite order. We can combine the above MA and AR processes into a
mixed model of the following form:

xt � �1xt�1 � Ê � �pxt�p � zt � 	1xt�1 � Ê � 	qxt�q,

where the above can be rewritten as;

��B�xt � 
�B�zt

thus, the above is known as the ARMA model. Because most time
series are nonstationary, the ARMA model described above can be
extended to include simple nonstationary artifacts such as trends and
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periods. This is achieved through the process of differencing the series
and when applied to the above equation is called an ARIMA model.
This is done by the introduction of a differencing operator, 
dxt, by
applying the following:

wt � 
dxt � �1 � B�dxt.

The equation above can be extended to the following:

��B�wt � 
�B�zt.

The above equation is said to be an ARIMA(p,d,q) model.
We have shown how to account for periodic components in a

nonstationary time series; however, in practice it is necessary to ac-
count for seasonally periodic components which repeat every s obser-
vations. We can further generalize the ARIMA(p,d,q) model to what is
popularly known as the seasonal ARIMA model, denoted using the
notation ARIMA(p,d,q) � (P,D,Q)s, where the seasonally periodic com-
ponents are repeated every s observations and P, D, Q are the seasonal
versions of p, d, and q, respectively.

We have made one significant change to the usual ARIMA method-
ology, namely that the usual estimates of the autocorrelation have been
replaced by the Fourier transform of the multitaper spectrum estimate.
Similarly, we replaced the cumulative periodogram with a cumulative
multitaper spectrum.

Moving Variance Filter
We used weighted and nonweighted moving variance filters to study

changes in variance of the residual after extraction of the periodic and
lagged components. For simplicity’s sake in the analysis to be pre-
sented in future work, we make the assumption that our process xt is
zero mean. To reduce estimator variance, we took the mean over six
samples each corresponding to the same day of the week and month
of each year (excluding the leap year), and the sample variance filter
estimate �̂ �nw�,t of any given 7 days is:

�̂�nw�,t �
1

YP�
k�0

Y�1

�
n�0

P�1

�xt�n�365k�2,

where P corresponds to the 7 days of the week and Y corresponds to
the 6 yr of the study period. The variance estimate �̂ �nw�,t is that of a
chi-square distribution19 with 42 (P * Y) degrees of freedom where we
determined the 5% and 95% thresholds.

To reduce estimator bias, we applied DPSS filter coefficients vn
(k) of

bandwidth NW � 2. Hence, we denote our DPSS weighted variance
filter estimate �̂ �w�,t of any given 7 days to be

�̂�w�,t �

�
k�0

Y�1

�
n�0

P�1

�vnxt�n�365k�2

Y �
n�0

P�1

vn
2

One notable property of DPSSs is that they are orthonormal; hence,

1 � �
n�0

P�1

vn
2

This reduces the denominator of �̂ �w�,t to Y, which we have left in
the notation in the event that vn is arbitrary.
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