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Regulation of Apoptotic and Inflammatory Cell Signaling in
Cerebral Ischemia

The Complex Roles of Heat Shock Protein 70
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Although heat shock proteins have been studied for decades,
new intracellular and extracellular functions in a variety of
diseases continue to be discovered. Heat shock proteins func-
tion within networks of interacting proteins; they can alter
cellular physiology rapidly in response to stress without requir-
ing new protein synthesis. This review focuses on the heat
shock protein 70 family and considers especially the functions
of the inducible member, heat shock protein 72, in the setting
of cerebral ischemia. In general, inhibiting apoptotic signaling
at multiple points and up-regulating survival signaling, heat
shock protein 70 has a net prosurvival effect. Heat shock
protein 70 has both antiinflammatory and proinflammatory
effects depending on the cell type, context, and intracellular
or extracellular location. Intracellular effects are often anti-
inflammatory with inhibition of nuclear factor-�B signaling.
Extracellular effects can lead to inflammatory cytokine pro-
duction or induction of regulatory immune cells and reduced
inflammation.

HEAT shock proteins (HSP), also called stress proteins,
are induced by specific types of stress, including heat,
and they are highly conserved from bacteria to hu-
mans.1–4 The HSP70 family facilitates the folding of
newly synthesized polypeptides in an adenosine triphos-
phate (ATP)–dependent manner, plays an important role
in maintaining the dynamic stability of protein folding
and protein–protein interactions within the cell, and
inhibits protein aggregation.5,6 These are referred to
collectively as chaperone functions. By interacting with
a range of cochaperones and client proteins, both con-
stitutive and inducible HSPs regulate the functioning of

other proteins and indeed whole signaling cascades.
These interactions allow a cell to rapidly respond to
stresses and changes in its environment without requir-
ing protein synthesis, though induction of stress protein
synthesis provides the next line of response. HSPs are
divided into families on the basis of molecular weight.
HSPs that are present as a single copy in bacteria (e.g.,
dna K), are generally represented by multiple related
genes in eukaryotes (e.g., HSP70 family).

HSP70 family members have long been recognized
to have cytoprotective effects. The human HSP70 fam-
ily consists of at least 12 members.7 The best known
members are the heat inducible form, Hsp70/Hsp72;
the constitutively expressed Hsc70/Hsp73/Hsc73; the
endoplasmic reticulum form, Grp78/BiP; and Hsp75/
mtHsp70/mortalin, which is localized largely to mito-
chondria. Of these, the cytosolic inducible Hsp72 plays
a major role in mediating cytoprotective, antiapoptotic,
and immune regulatory effects and is by far the best
studied. Enhanced expression of Hsp72 in experimental
models of stroke, sepsis, acute respiratory distress syn-
drome, renal failure, and myocardial ischemia has been
shown to reduce organ injury and in some cases improve
survival.8–11 Deletion of the hsp70.1/3 gene is associ-
ated with poorer outcome in mice.12 In addition to their
intracellular protective and antiapoptotic role, HSPs also
function as extracellular signals.13 We will use HSP70 to
refer to the entire family, and Hsp70 in instances where
either Hsp72 or 73 is referred to, because some reports
and some antibodies do not distinguish between these
two cytosolic family members, though the majority of
studies focus on the stress inducible Hsp72.

Clinical studies have begun to identify correlations
between Hsp70 and outcome in a variety of diseases. A
reduced ability to induce Hsp72 in peripheral lympho-
cytes was noted in patients with sepsis.14 Higher serum
Hsp72 levels correlated with improved survival after
trauma15 and severe sepsis.16,17 Several studies have eval-
uated Hsp70 expression after myocardial infarction and
cardiac surgery with bypass and found significant in-
creases in Hsp70 expression in all cases.18–20 Therefore,
increased levels of Hsp70 can indicate tissue damage,
but they may also indicate the successful mounting of a
stress response that correlates with tissue protection and
better outcome.21 Hsp70 seems to participate in protec-
tion against organ dysfunction both in critically ill pa-
tients and in patients during the perioperative period.
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Overexpression by gene therapy or chemical induction
of a stress response is under investigation as a potential
treatment for ischemia in several organ systems, includ-
ing the use of glutamine to increase Hsp70 in critically ill
patients.17,22 We will focus primarily on data from cere-
bral ischemia in this review.

Hsp72 in Cell Death Signaling Pathways in
Cerebral Ischemia

Hsp72 has been shown to provide neuroprotection
from cerebral ischemia in animal and cell-culture mod-
els of stroke.10,23–25 Although the mechanism of this
protection was initially attributed to chaperone func-
tions (i.e., maintaining correct protein folding and
blocking aggregation), recent work has shown that
Hsp72 may also directly interfere with cell death path-
ways such as apoptosis and necrosis (fig. 1) and may
modulate inflammation.10,26 –34

Programmed cell death occurs by multiple pathways. Apo-
ptosis occurs primarily by one of two pathways.35 The intrin-
sic pathway responds to stress and intracellular changes; it
relies on the release of mitochondrial proapoptotic mole-

cules, opening of the mitochondrial permeability transi-
tion pore, and activation of caspases.36 The second well-
described pathway is the extrinsic pathway, which is
triggered by the activation of plasma membrane recep-
tors, which then signal through their death domains.
This signaling activates caspase 8 and can proceed inde-
pendently of the intrinsic pathway, but it can also lead to
activation of the intrinsic pathway.37 In addition,
caspase-independent forms of cell death have been de-
scribed,38,39 and depletion of Hsp70 can trigger caspase-
independent cell death in cancer cells.40,41

Hsp72 Reduces Mitochondria-dependent Apoptotic
Signaling
Mitochondria are central to both necrotic and apopto-

tic cell death; the pathway followed often depends on
the severity of the injury.42 The resulting death reflects
the signaling cascade activated by the stress or apoptotic
stimulus.43–46 In most instances, severe cerebral isch-
emia rapidly renders mitochondria unable to produce
ATP, which ensures necrotic cell death. Mitochondrial
alterations that occur during both global and focal cere-
bral ischemia and contribute to cell death include
changes in mitochondrial respiratory function,47,48 pro-
duction of reactive oxygen species,49,50 changes in mi-
tochondrial membrane potential and permeability,51,52

and release of regulatory and signaling molecules from
the mitochondrial intermembrane space.53

Activation of the intrinsic mitochondrial pathway in
ischemic brain has been demonstrated in both neonatal
and adult models by the release of mitochondrial cyto-
chrome c.46,52,54 Cytochrome c translocates from the
mitochondria to the cytosol, where it interacts with the
CED-4 homolog, apoptosis protease activating factor 1,
and dATP to form the apoptosome and activate caspase
9.35,36 Caspase 9 activates caspase 3, one of the execu-
tioner caspases, as well as caspases 2, 6, 8, and 10.55

Caspase 3 also activates caspase-activated DNase, which
fragments DNA. In cerebral ischemia, caspases 3 and 9
have been shown to play a key role in neuronal death
after both global ischemia56,57 and focal ischemia,58–61

with caspase 3–dependent apoptosis more prominent in
neonatal than adult ischemia, and more prominent in
global than focal ischemia. In cerebral ischemia, the
downstream caspases cleave many substrate proteins,
including poly(ADP-ribose) polymerase (PARP).56,57,62

With cleavage of multiple targets within the cell and
DNA fragmentation, apoptotic cell death results.63–67

Hsp70 affects several different steps in the apoptosis
cascade (fig. 1). Hsp72 interacts with components of
the programmed cell death machinery upstream68,69

and potentially downstream70 of mitochondrial events.
Hsp72 can inhibit cytochrome c release in both neonatal
and adult ischemia,54,71,72 and inhibit apoptosis inducing
factor translocation to the nucleus34,73 while reducing
ischemic brain injury in both adult and neonatal models.

Fig. 1. Ischemia induces cell death by several distinct pathways,
and heat shock protein 70 (Hsp70) reduces all of these. Arrows
indicate increased activity or amount, and the barred ends
indicate steps that are blocked or reduced when Hsp70 is over-
expressed. These do not indicate direct protein–protein inter-
actions in many cases (see text for details). Fas and the tumor
necrosis factor receptor (TNFR) are transmembrane receptors
with intracellular death domains that can induce apoptosis by
activating caspase 8 via a pathway including tumor necrosis
factor–associated factor. AIF � apoptosis inducing factor; Akt �
protein kinase B; Apaf 1 � apoptosis protease activating factor
1; casp 9 � caspase 9; Cyt C � cytochrome c; JNK � c-Jun
N-terminal kinase; ROS � reactive oxygen species. Bcl-2 is an
antiapoptotic protein, and Bax is a proapoptotic member of the
same family. Smac/DIABLO is a mitochondrial protein that
upon release neutralizes the caspase inhibitory effects of inhib-
itor of apoptosis family proteins.
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Several of the studies on effects of Hsp72 in cerebral
ischemia have been performed in transgenic mice over-
expressing this gene. These findings in cerebral ischemia
are consistent with observations in other systems where
Hsp72 has been shown to interfere with recruitment of
procaspase 9 into the apoptosome, and to sequester
apoptosis inducing factor.74 Hsp72 also inhibited release
of the proapoptotic protein Smac/DIABLO from myo-
cyte mitochondria.75

Mitochondrial Hsp70/Hsp75/mortalin helps to main-
tain mitochondrial membrane potential, which may con-
tribute to the preservation of mitochondrial function76

and mitochondrial protein import.77,78 Several authors
have postulated an involvement of Hsp75 in preventing
electron leak between complexes III and IV, by binding
and consequently reducing cytochrome c loss from mi-
tochondrial membranes, thereby averting an increase in
state IV respiration rates and induction of cytochrome
c–linked apoptosis.79 Overexpression of Hsp75 in astro-
cytes reduced their vulnerability to oxygen glucose de-
privation, an in vitro model of ischemia, and maintained
higher ATP levels in stressed cells.80 Overexpression of
Hsp72 in astrocytes was associated with reduced reac-
tive oxygen species formation and better maintained
mitochondrial membrane potential after ischemia in
vitro 81 and with better preservation of glutathione lev-
els.27 In myocardial cells, overexpression of Hsp72 was
shown to increase the activity of the mitochondrial an-
tioxidant enzyme manganese superoxide dismutase.82

Hsp72 and the Bcl-2 Family Regulators of Apoptosis
Viral vector–mediated Hsp72 overexpression was as-

sociated with increased levels of Bcl-2 protein in brain
cells.83 Bcl-2 is a key antiapoptotic protein; its increased
expression blocks release of cytochrome c and apoptosis
inducing factor and reduces caspase activation. The bal-
ance between proapoptotic and antiapoptotic members
of the large Bcl-2 family determines whether cells un-
dergo apoptosis by regulating the mitochondrial mem-
brane permeability transition.84,85 Transgenic overex-
pression of Bcl-2 decreased infarction after focal
cerebral ischemia,86 whereas Bcl-2 knockout mice had
increased infarct area.87 Therefore, increased Hsp72
expression can reduce induction of apoptosis upstream
of mitochondria in cerebral ischemia both directly and
via increased Bcl-2 levels. Hsp72 blocks heat-induced
apoptosis primarily by inhibiting translocation of the
proapoptotic Bcl-2 family member Bax, thereby prevent-
ing the release of proapoptotic factors from mitochon-
dria.69 Hsp72 also interferes with the activity of apopto-
sis protease activating factor 1, which is required for
formation of the apoptosome and activation of caspase
9,54,74,88 but also see Steel et al.,68 who demonstrated
lack of direct interaction with apoptosis protease acti-
vating factor-1.

Hsp72 and Regulation of Transcription Factors in
Cell Death Signaling
Hsp72 interacts with pathways leading to activation

of transcription factors important in regulating cell
death. Hsp72 has been shown to inhibit c-Jun N-
terminal kinase (JNK) dephosphorylation, thereby
blocking its activation.89 –91 Activated JNK phosphor-
ylates the transcription factor c-JUN to up-regulate a
specific group of proteins.91 JNK activation plays both
direct and indirect roles in neuronal apoptosis,92 and
it is a proposed target for stroke therapy.93,94 JNK is
implicated in apoptosis triggered by Fas, a member of
the tumor necrosis factor superfamily of membrane re-
ceptors,95 as well as figuring prominently in the apopto-
sis of neurons induced by growth factor withdrawal.92

JNK is one of the mitogen-activated protein kinases.
These kinases constitute one of the central signaling
pathways in intracellular response,96 often determining
whether a cell responds with apoptosis or differenti-
ation and survival. JNK signaling in the nervous system
is not solely for promoting apoptosis. There is a high
level of basal JNK signaling activity in the nervous
system compared with other tissues, suggesting nor-
mal physiologic functions.94 Increasing evidence sug-
gests that the downstream events of JNK activation
leading to apoptosis involve both transcription97,98

and mitochondrial mechanisms.92,93

In ischemic stroke, increased c-JUN phosphorylation
colocalized with terminal deoxynucleotidyl transferase–
mediated dUTP-biotin end labeling in the penumbral
area in an experimental model of focal ischemia.99 Sub-
sequent studies showed that Jnk3-deficient mice have
increased resistance to global ischemia–hypoxia.94 JNK3
deficiency causes reduced Bim and Fas expression after
stroke, and Jnk3-null hippocampal neurons released less
cytochrome c after oxygen-glucose deprivation.94 Fur-
thermore, mice lacking the JNK signaling scaffold pro-
tein JIP1 have increased resistance to glutamate excito-
toxicity100 and reduced infarct volume in a focal
ischemia model of stroke.101 These studies suggest that
JNK signaling may play an important role in determining
cell death or survival for neurons at risk in the ischemic
penumbra.

Hsp72 also interacts with topoisomerase 1, which is
also implicated as a regulator of apoptosis.102,103 These
interactions were shown to be independent of the ATP
binding domain.102 Hsp72 is also an effector for the
important antiapoptotic prosurvival kinase Akt/protein
kinase B104,105 and acts upstream of the transcription
factor nuclear factor �B (NF�B), reducing its activation,
as discussed below.

Hsp72 and Inflammation

Hsp72 also plays a role in modulating inflammation
caused by cerebral ischemia. Inflammation can contrib-
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ute to the damage resulting from stroke.106–109 Inflam-
matory responses include the activation of resident mi-
croglia and astrocytes, as well as recruitment of
peripheral inflammatory cells. Inflammation and the con-
comitant release of reactive oxygen species and reactive
nitrogen species by inflammatory cells exacerbate dam-
age caused by direct ischemic production of reactive
oxygen species. Blocking the neutrophil integrin CD11/
CD18 with an antibody reduced injury in focal ischemia
in association with a marked reduction of neutrophil
infiltration.110 Recruitment of peripheral leukocytes
weakens the blood–brain barrier, leading to further dam-
age. HSP70 family members play a crucial role in mod-
ulating these responses.33,111

Hsp72 and Inflammatory Cytokines
Intracellular Hsp72 has a range of antiinflammatory ac-

tions. It can prevent responses to inflammatory cytokines
such as tumor necrosis factor � (TNF) and interleukin 1
(IL-1). Mice subjected to heat shock are protected from
normally lethal inflammatory shock after systemic adminis-
tration of high doses of TNF, whereas mice missing the
hsp70.1 gene are no longer protected.112 Liposomally de-
livered Hsp72 protein protected rats from IL-1–induced
impaired pancreatic �-cell function in a diabetes model.113

However, such protection from inflammatory responses
may come at a price, because Hsp72 can actually make
cells more liable to undergo apoptosis in response to
TNF.114,115 In addition to modulating the response to
inflammatory cytokines, Hsp72 also down-regulates their
production (fig. 2). Overexpression of Hsp72 in human
macrophages blocked lipopolysaccharide-induced in-
creases in the production of TNF, IL-1, IL-10, and IL-
12.116 In the setting of focal cerebral ischemia, overex-
pression of Hsp72 was associated with reduced
production of TNF and IL-1b,111 likely a reflection of
reduced NF�B activation.

Hsp72, iNOS, NADPH Oxidase, and Matrix
Metalloproteinases
Hsp72 may limit production of reactive oxygen species

via several routes. Inflammation leads to the production
of reactive oxygen species by activation of both the
inducible form of nitric oxide synthase (iNOS) and nic-
otinamide adenine dinucleotide phosphate (NADPH) ox-
idase. Induction of iNOS occurs in response to cytokine
release.117 Mice lacking the iNOS gene are protected
from cerebral ischemia relative to wild-type mice. At
high levels of production, nitric oxide reacts with super-
oxide to produce the highly toxic strong oxidant, per-
oxynitrite.117 However, iNOS can be beneficial in facili-
tating neurogenesis in ischemia.118,119 Hsp72 suppresses
iNOS activation in glial cells exposed to bacterial lipo-
polysaccharide.120

NADPH oxidase is one source of superoxide induced
by inflammation. NADPH oxidase produces the oxida-

tive burst of phagocytic leukocytes.121 Recent work
suggests that it may be activated in neurons as well as
in microglia. That neuronal NADPH oxidase plays a
role in aging and hypoglycemic injury was also sug-
gested.122,123 Heat shock induction of Hsp72 reduces
NADPH oxidase activity in neutrophils and increases
superoxide dismutase, which scavenges superoxide, in
phagocytes.124,125 Hsp72 has also been linked to regula-
tion of matrix metalloproteinases. Matrix metalloprotein-
ases are involved in remodeling of the extracellular
matrix; they are associated with breakdown of the
blood–brain barrier and hemorrhage after cerebral isch-
emia.126 Hsp72 overexpressing astrocyte cultures down-
regulated matrix metalloproteinase 9 after oxygen glu-
cose deprivation, compared with wild-type cell cultures,127

consistent with involvement of Hsp72 in regulation of
this aspect of inflammation.

Hsp72 and NF�B
Much, if not most, of intracellular Hsp72’s modulatory

effects on inflammation can be attributed to its regulation
of the NF�B pathway (fig. 2). Transcription factors of the
NF�B family are key players in the initiation of the inflam-
matory response.128 NF�B is comprised of four related
proteins that function as dimers. The most well studied of
these is the p50/p65 heterodimer, which is normally se-

Fig. 2. Intracellular heat shock protein 70 (Hsp70) blocks acti-
vation of the transcription factor nuclear factor �B (NF�B),
reducing production of downstream inflammatory mediators.
Three mechanisms have been described, inhibition of activa-
tion of I�B kinase (IKK), inhibition of ubiquitination (ubi) of
tumor necrosis factor–associated factor 6 (TRAF), and stabiliza-
tion of the inhibitory complex with inhibitor of NF�B (I�B).
IL1 � interleukin 1; iNOS � inducible nitric oxide synthase;
MMP � matrix metalloproteinase; TNF� � tumor necrosis fac-
tor �. p50 and p65 are two of the NF�B subunits that, after
release, move to the nucleus to act as a transcription factor
resulting in activation of inflammatory genes. The Y-shaped
bracket from Hsp70 to the I�B:NF�B complex is meant to indi-
cate binding and stabilization of the complex.

342 GIFFARD ET AL.

Anesthesiology, V 109, No 2, Aug 2008

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/109/2/339/656031/0000542-200808000-00022.pdf by guest on 19 April 2024



questered in the cytoplasm by its interaction with inhibitor
of �B (I�B). Phosphorylation of I�B by the I�B kinase
complex leads to ubiquitination and degradation of I�B,
freeing the NF�B dimer to translocate to the nucleus,
where it induces the expression of a multitude of genes
involved in inflammatory and immune responses, including
TNF, IL-1, iNOS, and matrix metalloproteinase 9.128,129

Induction of Hsp72 inhibits the nuclear translocation
of NF�B in response to inflammatory cytokines or other
stimuli.130 Mice overexpressing Hsp72 showed reduced
NF�B activation after stroke.111 This reduced activation
may be accomplished through direct interaction of
Hsp72 with NF�B proteins or by interactions with other
proteins in the NF�B regulatory pathway. Guzhova et
al.130 were able to coimmunoprecipitate Hsp72 with
three members of the NF�B family (p65, p50, and c-Rel)
after heat shock. I�B, however, did not coprecipitate.
Feinstein et al.120 demonstrated that heat shock or
Hsp72 expression decreased the accumulation of NF�B
p65 in the nucleus. Wong et al.131 found that heat shock
prevented degradation of I�B, thereby preventing acti-
vation of NF�B. Later studies identified interactions be-
tween Hsp72 and the � subunit of the I�B kinase com-
plex.114 Hsp72 may also interact directly with upstream
inducers of the NF�B pathway. Another recent study
found that Hsp72 directly associated with the I�B–NF�B
complex and suggested stabilization of the complex as
another mechanism.111 Chen et al.132 found a direct
interaction between Hsp72 and tumor necrosis factor
receptor–associated protein 6. Ubiquitination of tu-
mor necrosis factor receptor–associated protein 6 is a
crucial step in the activation of the NF�B pathway by
bacterial lipopolysaccharide and IL-1.133–135 Hsp72
prevents this ubiquitination, which in turn prevents
activation of the I�B kinase complex. It is likely that
Hsp72 can operate at many levels of the NF�B path-
way to inhibit or dampen its activation. Likely inde-
pendent of its effects on inflammation, NF�B has fre-
quently been associated with cell survival, acting
downstream of the kinases Akt and RIP-1. Although
there is also a report that NF�B may be involved in
induction of apoptosis by ceramide, the majority of
reports find it to have antiapoptotic actions.136

Extracellular HSP70s

Although most experiments to date address the intra-
cellular functions of HSP70s, studies have now clearly
demonstrated that Hsp72/Hsc73 can be released from
cells. The mechanisms of release and the extracellular
effects of HSP70 are growing areas of study. One of the
first observations suggesting extracellular release of
Hsp70 was made in the nervous system; exposure to
heat caused an increase in production of heat shock–like
proteins in the glial sheath surrounding the squid giant

axon (reviewed by Tytell).137 These proteins were trans-
ferred from the glial sheath to the interior of the axon.
Work from several laboratories now suggests that
Hsp72/Hsc73 is released from astrocytes or Schwann
cells and can be transferred to and affect neighboring
neurons/axons.138–142 Hsp70 release has been docu-
mented from a variety of nonneuronal cell types, includ-
ing epithelial cells,143 rat embryo cells,144 B lymphocytes
and dendritic cells,145,146 maturing erythrocytes,147 and
tumor cells.148 Hsp70 and anti-Hsp70 antibodies have
been identified in human serum.149 Since then, numer-
ous studies have examined levels of extracellular Hsp70
in relation to diseases and pathologic states, as men-
tioned in the introduction, though in some instances
Hsp72 and Hsc73 were not distinguished. Current think-
ing suggests that HSPs are released physiologically, as
well as by dying cells, and can act on a variety of
receptors.13,150

Mechanism of Release of Extracellular HSP70
Because Hsp72 and Hsc73 do not contain a leader

sequence for membrane targeting or localization to
membrane vesicles of the secretory pathway, several
alternative mechanisms for extracellular release have
been proposed. One hypothesis is release from lyso-
somes. Lysosomal inhibitors were shown to block Hsp72
release and release correlated with increased expression
of the intralysosomal protein LAMP1 on cell surfaces,151

though others found little effect with lysosomal inhibi-
tors. Release of Hsp72 by exosomes is the mechanism
supported by the most evidence at this point.145–148,152

Exosomes are membrane-bound vesicles containing var-
ious cytosolic proteins, including Hsp72/Hsc73 as well
as peripheral and integral membrane proteins.146 Some
investigators found that lipid rafts, which are sphingo-
lipid cholesterol–rich microdomains in cell membranes,
play a role in HSP70 release.143,153,154 In contrast, others
saw no effect on Hsp72 release when either lipid rafts or
the classic secretory pathway were disrupted.152

Effects of Extracellular Hsp72
If there are physiologic mechanisms for the release of

HSP70, there must also be physiologic functions for
these extracellular proteins. Although HSP release from
dying cells can serve as a danger signal, release from live
cells can signal a successful stress response21 and sug-
gests a modulatory or signaling role. Several reports
demonstrated that extracellular Hsp72 could induce re-
lease of cytokines, including TNF, interleukin-6 (IL-6),
and IL-1�, from monocytes.155–158 Other reports cast
doubt on those conclusions, suggesting that at least in
some cases, the response is due to contamination with
lipopolysaccharide, a potent inducer of cytokine re-
lease.159–161 Extracellular Hsp72- induced cytokine re-
lease was found to be mediated through Toll-like recep-
tor 2 (TLR2), TLR4, and downstream activation of NF�B
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(fig. 3).155 This contrasts with the aforementioned inhi-
bition of NF�B activation observed in mice overexpress-
ing Hsp72 after cerebral ischemia,111 which is likely due
to intracellular effects.

TLR4 initiates the signaling cascade triggered by lipo-
polysaccharide from gram-negative bacteria, whereas
TLR2 mediates the signaling cascade triggered by bacte-
rial lipoproteins, gram-positive bacteria, mycoplasma,
yeast, and spirochetes. A role for HSP70 in the response
to lipopolysaccharide has been identified. The details of
the activation complex induced by lipopolysaccharide
are still being worked out, but elegant studies of the mo-
bility of lipopolysaccharide and some of the relevant recep-
tors in the plasma membrane suggest that Hsp70 and 90
can be immobilized in the plasma membrane and colocal-
ize with lipopolysaccharide and TLR4, after an initial tran-
sient interaction of lipopolysaccharide with CD14.159 Lipo-
polysaccharide signaling is thus mediated by a large
complex that can include Hsp70. The composition of the
complex determines whether signaling results in induction
or inhibition of immune response.162,163 There is still dis-
cussion in the literature on the extent to which Hsp70
binding is directly mediated by TLR2 or 4, and whether the
interaction of these receptors with Hsp70 is of high affinity,
because overexpression of either receptor alone does not
increase binding of Hsp70 to cells that previously did not
bind Hsp70.150

Arispe et al.164 showed a direct interaction of Hsp72/
Hsc73 with lipid components. Hsc73 was shown to
incorporate into the lipid bilayer and create an ATP-
dependent cation channel.164 These investigators also
showed that Hsp72 and Hsc73 are able to aggregate
liposomes by interacting with phosphatidylserine.165 Al-
though phosphatidylserine is generally found on the

cytosolic side of the plasma membrane, it is present on
the surface of apoptotic cells. Hsp72 and Hsc73 seem to
accelerate cell death by interacting with phosphatidyl-
serine on the surfaces of apoptotic cells.165

Internalization of extracellular Hsp72 is thought to be
via cell surface receptors. Hsp72 was found to interact
with two main families of cell surface proteins: the
scavenger receptor family members LOX-1 and SR-A,166

and the C-type lectins of the natural killer family. These
proteins could mediate internalization of Hsp72 protein
from the extracellular space.167 Extracellular Hsp72 has
been extensively studied for its role in antigen presenta-
tion via the major histocompatibility complex pathway,
a function important for recognition of tumor cells.168

Extracellular Hsp70 is important in triggering the activity
of natural killer cells. Multhoff et al. identified an N-
terminal 14–amino acid peptide of Hsp70 that was as
active in stimulating natural killer cell cytolytic activity as
full-length Hsp70 protein.169 The activation of the cyto-
lytic activity of natural killer cells by Hsp70 is mediated
through C-type lectin receptor CD94 and the adhesion
molecule CD56.170

Interestingly, administration of Hsp70 in vivo pro-
moted wound healing by stimulating macrophage
phagocytic activity,171 and in some chronic inflamma-
tory diseases it is now appreciated that HSPs can prevent
or arrest inflammatory damage and promote production
of antiinflammatory cytokines.172 Pretreatment with
Hsp70 has also been shown to reduce the inflammatory
response of monocytes to a subsequent challenge with
lipopolysaccharide.173 Therefore, several different func-
tions have already been described for extracellular
HSP70, including protection of neurons and modulation
of immune cell function.

Extracellular Hsp70 and Cardiovascular Disease
As the importance of inflammation in cardiovascular

disease is increasingly recognized, the likelihood that
immunomodulatory effects of HSP70 may be relevant
increases. A significant correlation between elevated lev-
els of serum Hsp70 and reduced progression of athero-
sclerosis assessed as carotid intima–media thickness was
found.174 A study of coronary artery disease patients
observed significantly higher serum Hsp70 levels in pa-
tients found not to have coronary artery disease on
angiogram, and disease severity was inversely correlated
with serum Hsp70 levels.175

Although higher serum Hsp72 levels were associated
with reduced risk of atherosclerosis, Hsp72 is released with
myocardial infarction; serum levels after acute myocardial
infarction were higher than in patients with angina.18 Levels
of extracellular Hsp72 also correlated with levels of IL-6 and
IL-8. In atherosclerosis, endothelial cells are activated and
macrophages release inflammatory cytokines. Oxidized
low-density lipoproteins accumulate in macrophages.
Svensson et al.156 found that oxidized low-density lipopro-

Fig. 3. Extracellular heat shock protein 70 (Hsp70) can be re-
leased by astrocytes within the central nervous system and bind
to a variety of cells, especially neurons and microglia. Several
cell surface receptors are implicated in Hsp70 binding to mono-
cytes such as microglia. Hsp70 plays an important role in anti-
gen presentation and can be present in serum. LPS � lipopoly-
saccharide; TLR � Toll-like receptor.
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tein–treated macrophages released increased amounts of
Hsp72, and this released Hsp72-induced IL-1� and IL-12
production by naive macrophages. While elevated serum
Hsp72 was associated with slower progression of carotid
intimal thickening, it may also have some proinflammatory
effects. The role of Hsp72 in cerebral atherosclerosis and
stroke is thus complex.

Conclusions

Many studies support the protective effect of Hsp72 in
cerebral ischemia. These studies employed transgenic
overexpression of Hsp72 in neonatal and adult models of
ischemia,54,72,73,176 the use of mice in which the
Hsp70.1 gene was knocked out,71 and transfection or
viral vector mediated overexpression.10,34 Although
each method has its own caveats, the consistent result
strongly suggests that Hsp72 is efficacious at reducing
cerebral ischemic injury. However, in evaluating the
different mechanisms discussed in this article, much
work remains to define the relative contributions of each
to protection in the setting of cerebral ischemia, and
differences between different models should be ex-
pected. Although there is already strong evidence for
both antiinflammatory and anti–cell death effects of
Hsp72 in cerebral ischemia, the relative importance of
these mechanisms remains to be determined. In marked
contrast, the role of extracellular Hsp72 in stroke has not
yet been studied in animal models, and at this moment
we are in the curious position of having more data on the
association of serum Hsp70 with ischemic disease in
patients than in animal models. Future studies should
address this issue.

Hsp70 has many physiologic roles, both intracellular
and extracellular, and participates in the regulation of
many intracellular processes. Hsp70 holds great promise
as a potential therapeutic approach to many diseases
involving abnormalities of protein folding or increased
aggregation as found in both acute and chronic neuro-
degenerative diseases. Hsp70 is also an important im-
mune modulator and is now appreciated to play a role as
an extracellular signaling molecule. Current understand-
ing suggests active release of HSP from live cells to
modulate the function of other cells as well as release
from dying cells as a danger signal. The use of serum
Hsp70 as a marker in diverse disease states and its pos-
sible use in prognosis are just being investigated. There-
fore, Hsp70 holds promise as both a therapeutic strategy
and a biomarker for severity of stress.

The authors thank Jenny Hu, Erin Reiland, and Jessica Howard (Secretaries,
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