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Obesity-induced Insulin Resistance and Hyperglycemia

Etiologic Factors and Molecular Mechanisms
J. A. Jeevendra Martyn, M.D., F.R.C.A., F.C.C.M.,* Masao Kaneki, M.D., Ph.D.,† Shingo Yasuhara, M.D., Ph.D.‡

Obesity is a major cause of type 2 diabetes, clinically evidenced
as hyperglycemia. The altered glucose homeostasis is caused by
faulty signal transduction via the insulin signaling proteins, which
results in decreased glucose uptake by the muscle, altered lipogen-
esis, and increased glucose output by the liver. The etiology of this
derangement in insulin signaling is related to a chronic inflam-
matory state, leading to the induction of inducible nitric oxide
synthase and release of high levels of nitric oxide and reactive
nitrogen species, which together cause posttranslational modifi-
cations in the signaling proteins. There are substantial differences
in the molecular mechanisms of insulin resistance in muscle ver-
sus liver. Hormones and cytokines from adipocytes can enhance
or inhibit both glycemic sensing and insulin signaling. The role of
the central nervous system in glucose homeostasis also has been
established. Multipronged therapies aimed at rectifying obesity-
induced anomalies in both central nervous system and peripheral
tissues may prove to be beneficial.

TYPE-2 diabetes is a polygenic disease. Obesity has been
identified as a major causative factor for the insulin
resistance and hyperglycemia associated with diabetes.1

Developed and developing countries alike are experienc-
ing a sharp rise in the incidence of obesity-linked type-2
diabetes.2 Consequently, obesity-induced diabetes is
emerging as a global health-care problem threatening to
reach pandemic levels by 2030, when the incidence is
projected to more than double in a period of only 30

years (from 171 million in 2000 to 366 million in 2030).3

The problem is not limited to adults. There has also been
a marked increase in obesity (defined as a body mass
index of greater than 30 kg/m2) among children.4 In the
early stages of type-2 diabetes, insulin resistance is coun-
tered by a state of hyperinsulinemia brought about by
stepped-up insulin production in the pancreas. Euglyce-
mia is therefore maintained. Overt hyperglycemia does
not develop until later stages, when pancreatic � cells
can no longer compensate for the high levels of insulin
resistance in peripheral tissues. Along with diabetes,
there has been a concomitant increase of the incidence
of metabolic syndrome, an obesity-linked condition char-
acterized by clinical features of insulin resistance, dys-
lipidemia, and hypertension.5,6 Ultimately, it is the com-
pounding effects of these cardiovascular, renal, cerebral,
and thrombogenic anomalies that give rise to the in-
creased morbidity and mortality associated with obesity,
type-2 diabetes, and metabolic syndrome.6

Malfunctions in energy homeostasis resulting from ge-
netic predisposition can lead to obesity. However, the
recent increase in obesity is not thought to be due to
specific congenital or hereditary defects in lipid metab-
olism, but to the inability of the body to cope with
high-energy food intake, along with a sedentary life style
and lack of exercise and/or mechanized work playing a
contributing role.2–4 Adipocyte tissue, previously con-
sidered to be no more than an energy-storing depot, also
has become a focus of intense scientific interest and is
now thought to integrate a wide array of pathophysio-
logic processes, including nutrient homeostasis, immune
response, blood pressure control, hemostasis, bone
mass, and thyroid and reproductive function, in both
physiologic and pathophysiologic states.7,8 Some of
these effects are brought about by adipogenic hormones
including leptin, adiponectin, and other adipokines (cyto-
kines from fat). This review begins with a brief presenta-
tion of the molecular aspects of normal signal transduction
via the insulin signaling network, followed by in-depth
discussion of the molecular mechanisms specific to obesity
that induce derangements in insulin signaling (insulin resis-
tance) and hyperglycemia. Metabolic syndrome and its ef-
fects on perioperative care have been reviewed recently in
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Physiologic Actions of Insulin and the
Insulin-Signaling Network

Insulin is the principal hormone of glucose homeosta-
sis; it stimulates glucose influx into muscle, glycogen
synthesis in the liver and muscle, and fat deposition in
adipocytes.10 Other important actions of insulin include
the enhancement of protein synthesis, cell survival and
growth, prevention of protein catabolism, and antiin-
flammatory effects.11–14 Insulin-like growth factor-1
can behave like insulin, producing the same beneficial
effects.13,14 Obesity-associated type 2 diabetes is evi-
denced by increased glucose levels in the blood,
which result from elevated glucose production in the
liver (gluconeogenesis and glycogenolysis) and de-
creased glucose uptake by muscle.1,10 In obesity-in-
duced diabetes, or any pathologic condition associ-
ated with decreased insulin function, hyperglycemia
together with the attenuated anabolic and antiinflam-
matory effects leads to muscle protein loss (muscle
wasting), increased tendency to infection, and en-
hanced inflammatory response.

Similar to the G-protein coupled adrenoceptor, which
is the paradigm of eukaryotic signal transduction,15 in-
sulin also relies on a series of intracellular downstream
signals to produce its physiologic effects.10 The binding
of insulin to the �-subunit of the insulin receptor (IR)
molecule induces rapid autophosphorylation (addition
of a PO4

– – group from adenosine triphosphate) of the
�-subunit, which turns on its tyrosine kinase activity (fig.
1).10 This gives IR the ability to phosphorylate various
tyrosine residues of other cytosolic moieties, including
insulin receptor substrates (IRS)-1 and -2. Phosphoryla-
tion of the tyrosine residues that reside on these sub-
strates is pivotal for the biologic actions of insulin.16,17

The tyrosine phosphorylation of IRS proteins leads to the
second intracellular step of insulin action, the associa-
tion of phosphorylated IRS-1 or IRS-2 with the enzyme
phosphoinositide-3-kinase (PI3K). The association of
IRS-1 with PI3K occurs through the phosphorylation of
Tyr-Met-X-Met or Tyr-X-X-Met motifs on IRS-1 and Src
homology 2 domains on the 85-kDa subunit of PI3K.18

Absence of PI3K function due to disease or treatment

Fig. 1. Signal transduction via insulin receptor and its downstream signaling proteins. The insulin receptor is a kinase, an enzyme
that catalyzes the transfer of phosphate from adenosine triphosphate to another substrate. When insulin binds to the insulin
receptor it undergoes autophosphorylation and catalyzes the tyrosine phosphorylation of insulin receptor substrates (IRS)-1 and -2.
These IRS proteins interact with diverse signaling molecules, including phosphoinositide-3 kinase, which in turn activate protein
kinase B. The downstream proteins controlled by protein kinase B include mammalian target of rapamycin (mTOR) and glycogen
synthase kinase-3� (GSK-3�). The metabolic and potent anabolic actions of insulin include glucose metabolism, glycogen–lipid–
protein synthesis, cell growth and survival, and antiinflammation. These pleiotropic effects of insulin are mediated by specific gene
expression, translation of proteins, and enhanced mitochondrial function.
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with wortmannin (a potent PI3K inhibitor) or with dom-
inant negative p85, which inactivates endogenous PI3K
activity, abolishes glucose uptake in muscle and adipose
tissue.18,19

The IRS-activated PI3K in turn affects several down-
stream signaling pathways through the generation of a lipid
second messenger, phosphatidyl-inositol-3, 4, 5-triphos-
phosphate. A critical target for PI3K is protein kinase B
(Akt/PKB).20,21 A serine–threonine kinase, Akt/PKB is
the major effector of the IR–IRS-1–PI3K pathway and is
activated by the phosphorylation of its threonine 308
and serine 473 residues. Akt/PKB drives the metabolic
actions of insulin, including glucose transport, glycogen
synthesis, fat deposition, and protein synthesis. It also
drives cell growth and cell survival via pathways both
dependent and independent of activation of the rapam-
ycin-sensitive kinase known as mammalian target of rapa-
mycin, with the downstream targets p70 S6 kinase and
4E-BP1.13,14,22 For example, loss of trophic signaling via
Akt/PKB and downstream proteins not only leads to loss
of glucose homeostasis,19 but also to loss of muscle mass
and increased cellular loss by apoptosis.23–25 Some of the
cell survival or cell growth effects of Akt/PKB are medi-
ated by its actions on the mitochondria. Parenthetically,
because the Akt/PKB–PI3K–mammalian target of rapamy-
cin pathway plays a pivotal role in cell growth and survival,
these proteins have become the target of novel signal-
transduction inhibitors that are used to produce cell death
in the area of cancer research.

Another target of Akt/PKB is glycogen synthase kinase-3�
(GSK-3�), which is a negative regulator of glycogen syn-
thase, the enzyme that catalyzes the synthesis of glycogen.
When the serine 9 on GSK-3� is phosphorylated and inac-
tivated by Akt/PKB, glycogen and protein synthesis are
enhanced.26,27 It also has been proposed that the Akt/PKB–
GSK-3� pathway mediates some of the antiinflammatory
effects of insulin.26,27 In addition, GSK-3� operates not only
as a downstream component of insulin signaling, but also
as a negative regulator of upstream insulin signaling.
GSK-3� phosphorylates IRS-1 at serine 332, which in turn
attenuates the insulin response by inhibiting IR-mediated
tyrosine phosphorylation of IRS-1.28 Thus, whether occur-
ring dependently or independently of Akt/PKB activity,
increased GSK-3� activity decreases glycogen synthesis and
can lead to impaired upstream insulin signaling as well as
enhanced inflammation.26,27

Pathogenesis of Insulin Resistance and
Hyperglycemia in Obesity

Despite several years of intense investigation, the
pathogenesis of obesity-induced insulin resistance has
not been fully elucidated. Recently, however, some of
the derangements in insulin signaling have been clari-
fied, along with the etiologic factors that lead to obesity-
associated hyperglycemia.

Adipocytes decrease glucose uptake in peripheral tis-
sues by the release of free fatty acids.29 In humans, even
brief periods of lipid infusion (e.g., 4 h) will decrease
insulin-stimulated glucose uptake in muscle as well as
PI3K activity.30 Although the classic features of acute
inflammation—i.e., swelling, redness, pain, and fever
(tumor, rubor, dolor, calor)—are absent, signs of chronic
inflammation are observed with the release of inflamma-
tory cytokines including tumor necrosis factor-�, inter-
leukin-6 (IL-6), and interleukin-1� (IL-1�). These cyto-
kines have been implicated in the pathogenesis of
insulin resistance.28,31 In a published report, however,
when antibodies to tumor necrosis factor-� were infused
to diabetics, they did not consistently effect an improve-
ment in insulin signaling.32 Nevertheless, contradictory
evidence has been observed in rheumatoid arthritis; pa-
tients treated with anti–tumor necrosis factor-� antibody
experienced a secondary benefit of enhanced insulin
sensitivity.33 Similarly, IL-1� antagonist, a suppressor of
Il-1� cytokine, has been shown to improve glycemia and
�-cell secretory function in obese humans.34

Obesity-associated adipocyte apoptosis (cell death) ap-
pears to be the primary event underlying insulin insen-
sitivity. The subsequent cell death–associated infiltration
of macrophages appears to explain the presence of
chronic inflammation.35 The release of macrophage che-
moattractant protein-1 by the adipocyte plays a role in
the recruitment of macrophages.7 The infiltrating mac-
rophages are implicated in cytokine production (fig. 2).
These adipogenic cytokines appear to function in a para-
crine fashion, because circulating cytokines are not con-
sistently elevated. The concomitant release of reactive
oxygen species exaggerate or play a causal role in cyto-
kine-related insulin resistance.36,37 The intracellular me-
diators of this inflammatory response include nuclear
factor (NF)-�B, c-Jun amino-terminal kinase–stress-acti-
vated protein kinase (JNK/SAPK), and induction of the
suppressor of cytokine signaling-3.5,28,38–40 Macrophage
infiltration occurs not only in the adipocyte, but also in
the liver.28 The associated activation of the JNK/SAPK
pathway also promotes the development of hepatic in-
flammation leading to hepatic steatosis (fat deposition),
lipid peroxidation, and hepatic apoptosis, all of which
are seen with obesity-induced diabetes.38 It has been
suggested that these inflammatory mediators also lead
to serine phosphorylation of IRS-1.39,40 Serine phos-
phorylation, as opposed to tyrosine phosphorylation,
inhibits insulin signaling.28 Thus, high-dose aspirin or
salicylate has been used as an antiinflammatory agent
to treat fat-induced insulin resistance in humans with
good success.41 The antiinflammatory effect of salicy-
lates has been attributed to the inhibition of inhibitor
of nuclear factor kappa (IKK)� kinase and NF�B,
which has lead to speculation that the glucose lower-
ing and insulin sensitization may be due to NF�B
inhibition.
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Other etiologic factors have been proposed in the patho-
genesis of obesity-induced insulin resistance. These factors
include oxidative stress, mitochondrial dysfunction, intra-
cellular lipid accumulation in skeletal muscle and liver, and
decreased �-oxidation. Importantly, however, it remains
unclear how these factors induce and/or exacerbate insulin
resistance, as well as how they interrelate and by what
specific mechanisms. Recent studies have begun to answer
some of these questions, by elucidating that these patho-
logic and etiologic factors converge to activate inflamma-
tory or stress signaling pathways.

Obesity-induced Insulin Resistance in
Skeletal Muscle

Skeletal muscle is the major site of glucose disposition in
the body. The glucose that is transported into muscle is
used or stored as glycogen. In skeletal muscle, lipid accu-
mulation has been implicated in the induction of obesity-
related insulin resistance. In humans, intramyocellular lipid
content correlates quite well with insulin resistance.42 In-
creased lipid accumulation results in activation of protein

kinase C � and the JNK/SAPK pathway, in part through the
elevated production of ceramide, which mediates impaired
insulin signal transduction in muscle.43,44 JNK2 deficiency
ameliorated impaired insulin signaling in skeletal muscle of
obese, diabetic (leptin-deficient) mice.45 In contrast, unlike
the liver, inhibition of the IKK–NF-�� pathway46 or atten-
uation of endoplasmic reticulum (ER) stress (see Endoplas-
mic Reticulum Stress)47 did not improve insulin resistance
in skeletal muscle in mice. These observations indicate
that, in skeletal muscle, the JNK/SAPK pathway plays an
important role in obesity-induced insulin resistance,
whereas the IKK–NF-�� pathway and ER stress are not
involved. However, the molecular bases that would explain
these differences in obesity-induced insulin resistance in
skeletal muscle versus the liver remain largely unknown.

Insulin Resistance and Glucose Homeostasis
in the Liver with Obesity

Circulating glucose levels reflect a balance between
glucose production by the liver and glucose uptake by
the muscle.10 The liver plays a key role in obesity-in-

Fig. 2. Obesity leads to an inflammatory response in the liver and in adipose tissues. Obesity-induced inflammation results in
infiltration of macrophages and release of cytokines, tumor necrosis factor-� (TNF-�), interleukin-6 (IL-6), and interleukin-1�
(IL-1�). The downstream effector of cytokine-induced inflammation is induction of inducible nitric oxide synthase (iNOS). The
extremely high levels of nitric oxide that are released, together with reactive oxygen species, generate reactive nitrogen species
including peroxynitrite, which leads to S-nitrosylation and tyrosine nitration (posttranslational modifications) of proteins. This
calcium-independent process alters the function of many proteins, including those involved in insulin signaling. Gene manipulation
of iNOS or treatment with iNOS inhibitors ameliorates the deranged insulin signaling as shown in figure 3.
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duced hyperglycemia and affects multiple pathways.5,48

Insulin promotes the synthesis of glycogen, while re-
pressing glucose release in the liver. This effect is en-
hanced and coordinated through multiple genes that
control glycolysis, fatty acid synthesis, gluconeogenesis
(synthesis of glucose from proteins), and glycogenolysis
(breakdown of glycogen).10 Insulin inhibits transcription
of the gene encoding for phosphoenolpyruvate car-
boxykinase, the rate-limiting enzyme that controls glu-
coneogenesis.49 Insulin also increases transcription of
glycolytic enzymes (glucokinase and pyruvate kinase)
and lipogenic enzymes (fatty acid synthase, acetyl-CoA
carboxylase). These effects may be mediated by a host of
transcription factors and cofactors including forkhead
and peroxisome proliferators that activate receptors �
and � and their coactivators.50,51 Akt/PKB modulates
these transcription factors and coactivators.10,13,17 Re-
cent studies indicate that the effect of insulin on lipid
metabolism in the liver also is mediated by changes in
sterol regulatory element–binding protein-1c (SREBP-
1C). Increase in sterol regulatory element–binding pro-
tein expression can increase expression of gluconeo-
genic and lipogenic genes and vice versa.52,53 Human
studies confirm the importance of sterol regulatory el-
ement–binding protein in hepatic insulin resistance and
hepatic steatosis, particularly in obesity.54,55 The pres-
ence of inflammation (macrophage infiltration), hepato-
cellular swelling, and steatosis constitute an operative
risk, particularly in the liver, and increase the periop-
erative morbidity and mortality.56,57

Evidence for the Role of Inducible Nitric
Oxide in Obesity-induced Insulin Resistance

Although inflammation leading to activation of the
JNK/SAPK and IKK–NF�� pathways has been implicated
in the pathogenesis of obesity-related insulin resistance,
little has been published about the downstream effectors
of these pathways. Our recent studies in rodents indicate
that inducible nitric oxide synthase (iNOS) is a pivotal
downstream effector of insulin resistance in many patho-
logic states, including obesity. Three isoforms of nitric
oxide synthase are expressed in mammalian tissues. En-
dothelial and neuronal nitric oxide are constitutively
expressed and generate small amounts of nitric oxide,
which produces physiologic action by elevating cyclic
guanosine monophosphate in a calcium-dependent man-
ner.58 In contrast, inflammation results in sustained high
output of nitric oxide (up to 1,000-fold).59 These ex-
tremely high concentrations of nitric oxide, particularly
in the presence of reactive oxygen species, form highly
reactive nitric oxide–related species, including peroxyni-
trite, which lead to cyclic guanosine monophosphate–
and calcium-independent posttranslational modifications
of proteins such as thiol nitrosylation (S-nitrosylation of
cysteine residues) and tyrosine nitration.60

Initially, we tested the beneficial effects of iNOS inhi-
bition on inflammation and hyperglycemia induced by
lipopolysaccharide.61 In these studies, using the eugly-
cemic insulin clamp, we documented that lipopolysac-
charide-induced hyperglycemia and hepatic glucose out-
put can be completely suppressed by the iNOS inhibitor
aminoguanidine.61 Subsequent studies from our labora-
tory have demonstrated more clearly the molecular
mechanisms by which iNOS induces insulin resis-
tance.62–64 Diabetic mice had increased expression of
S-nitrosylated proteins. S-nitrosylation of tyrosine resi-
dues leads to decreased signaling via these pro-
teins.62–64 Increased levels of nitric oxide inactivated
insulin-signaling proteins including IRS and Akt/PKB in a
concentration-dependent manner.62–64 The concomi-
tant presence of oxidative stress accelerated the S-ni-
trosylation and inactivation and/or breakdown of insulin-
signaling proteins.63,64 Denitrosylation with a reducing
agent reactivated the nitrosylation-mediated inactivation
of Akt/PKB.62

In the liver, obese (leptin-deficient) mice have a 2.5-
fold increase in iNOS protein expression compared with
wild type mice (fig. 3A). The immunoreactivity for nitro-
tyrosine, a marker for nitrosative stress, is elevated in the
liver of these obese mice. Treatment with the iNOS
inhibitor L-N6-(1-Iminoethyl)lysine, better known as L-
NIL, reverses elevated nitrotyrosine immunoreactivity in
the liver (fig. 3B). In hepatic insulin resistance, there is
decreased expression of IRS proteins.16 The treatment of
obese mice with L-NIL increased protein expression of
IRS-1 in a proteosome-dependent manner, while IRS-2
expression was increased by L-NIL at the mRNA level.64

The increased expression of IRS proteins in the liver was
associated with improved insulin signaling via IRSs–
PI3K together with better glycemic control and insulin
sensitivity. The improved insulin sensitivity was evi-
denced as lower fasting insulin and glucose levels in
L-NIL-treated animals (fig. 3C and D).63 All of these ef-
fects with iNOS inhibitor were not associated with
changes in cyclic guanosine monophosphate in the liver,
indicating that endothelial or neuronal NOS does not
play a role in insulin resistance. It is also interesting to
note that the expression of sterol regulatory element–
binding protein, which is usually increased in hepatic
insulin resistance, also was reduced after treatment with
L-NIL.63 In addition, inhibition of iNOS by gene disrup-
tion also reversed the decreased IRS-1 expression and
thereby improved IRS-1–mediated insulin signaling in
skeletal muscle of obese, diabetic (leptin-deficient)
mice.64 Some of these findings are consistent with stud-
ies by others, which have shown that iNOS expression,
S-nitrosylated proteins, and tyrosine nitration are ele-
vated in patients with type-2 diabetes,65–67 and that
genetic disruption of iNOS improves insulin signaling in
obese mice.68 On the basis of these observations, iNOS
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inhibitors may prove to be a useful tool for treating
obesity-induced diabetes.

Endoplasmic Reticulum Stress,
Hyperglycemia, and Insulin Resistance

As indicated previously, chronic low-grade inflamma-
tion with activation of the IKK–NF�B and JNK/SAPK
pathways has been implicated as a causative factor in
hepatic insulin resistance.38–40 In fact, obesity-related
insulin resistance is associated with elevated circulating
levels of C-reactive protein, a clinically measurable indi-
cator and marker of acute-phase–protein response to
inflammation by the liver.69,70 An alternative explanation
has been proposed implicating ER stress as a key factor
in obesity-linked chronic inflammation and the associ-
ated insulin resistance in liver.28,47,71

From an evolutionary standpoint, the ER stress re-
sponse is a cellular mechanism that evolved in eu-
karyotes as a coping mechanism for glucose or nutrition
deprivation. The ER stress response in mammals was first
characterized as the transcriptional activation of glucose-

regulated proteins (e.g., glucose-regulated protein 78) in
response to glucose deprivation.72 Of note, absence of
this ER stress response to glucose deprivation in genet-
ically mutated mice leads to hypoglycemia and death
shortly after birth,73 and further supports the notion that
ER stress response plays a critical role in glucose ho-
meostasis, particularly in the liver. A critical role for ER
stress in obesity-induced hepatic insulin resistance has
been demonstrated by the following observations:28,47,71

Expression of glucose-regulated protein 78 and RNA-
dependent protein kinase-like endoplasmic reticulum ki-
nase (PERK), both indicators of ER stress response, was
increased in the liver of leptin-deficient mice and in mice
fed a high-fat diet.47,71 Mice deficient in X-box protein
developed insulin resistance concomitant with elevated
ER stress response.47 Increased expression in the liver of
oxygen-regulated protein 150, which is a resident ER
chaperone, protects cells from ER stress73,74 and atten-
uates obesity-induced diabetes in rodents.71 Conversely,
decreased expression of oxygen-regulated protein 150
causes ER stress and insulin resistance in the liver.71 ER
stress mediates activation of IKK–NF-�B and JNK/SAPK

Fig. 3. Expression of inducible nitric oxide synthase (iNOS) and tyrosine nitration in leptin-deficient (ob/ob) mice and its reversal
with iNOS inhibitor L-N6-(1-Iminoethyl)lysine (L-NIL). (A) Immunoblot analyses (IB) revealed that iNOS expression was increased in
the liver of ob/ob mice compared with wild-type (WT) mice. (B) Nitrotyrosine immunoreactivity was elevated in the liver of ob/ob
mice treated with phosphate buffered saline (PBS) compared with WT mice. L-NIL reduced nitrotyrosine immunoreactivity in ob/ob
mice. Magnification: �400. (C and D) The decrease in nitrotyrosine immunoreactivity observed during treatment of ob/ob mice with
L-NIL was associated with improved glycemic control, evidenced as normalization of fasting blood glucose level with reduced plasma
insulin concentration. Nuclei are stained with diamidino-2-phenylindole. Adapted from Fujimoto et al.63
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in cells75,76 in association with derangements in lipid
metabolism.77,78 Induction of iNOS and/or high levels of
nitric oxide also can induce IKK–NF-�B and JNK/SAPK
with induction of ER stress.79–81 The interaction be-
tween iNOS and the IKK–NF-�B–JNK/SAPK pathway,
along with the potentiation of effects caused by this
interaction, leads to a vicious cycle of insulin resistance.
The clinical significance of ER stress in obesity, steatosis,
and insulin resistance in humans is unclear, but pharma-
cologic agents are being developed to counteract these
effects and have proved successful in rodents.75

Recently, inflammatory or stress signaling pathways
have been highlighted as a major culprit in obesity-
induced insulin resistance,28 and iNOS has been pro-
posed as an important component of feed-forward mech-
anisms that lead to insulin resistance, in which it
functions as both a downstream effector and an up-
stream enhancer of inflammation. Contrary to findings in
liver, however, published studies do not find increased
ER stress in skeletal muscle of obese, diabetic mice,71,75

and although it is conceivable that ER stress may con-

tribute to apoptosis in adipocytes, this has not been
investigated.

Central Nervous System Control of Glucose
Homeostasis

A close connection between output from the central
nervous system (CNS) and glucose homeostasis is now
well established.82 Adipose tissue, previously thought to
be just an energy storage site, controls many physiologic
functions by the release of adipokines.5 Leptin (based on
the Greek leptos, or thin) was the first adipokine re-
leased by adipocytes to be identified. In addition to
exerting insulin-enhancing effects in peripheral tissues,
leptin also affects the CNS by controlling food intake
through its actions on the mediobasal hypothalamic area
(arcuate nucleus), which contains high concentrations
of leptin receptor (fig. 4).83 Mutations in the leptin
receptor (which cause decreased sensitivity to leptin) or
low levels of leptin can lead to increased appetite and
obesity in rodents and humans.83,84 Some obese subjects

Fig. 4. Central nervous system control of glucose homeostasis. Leptin and long-chain fatty acids released from adipocytes influence
food intake via the hypothalamus (depicted in blue). Ghrelin and other hormones from the gut also influence food intake and satiety
(blue). Afferent and efferent autonomic signals from and to the fat pad, via the sympathetic and parasympathetic nerves to and from
the hypothalamus, influence fat synthesis and breakdown of fat (depicted in red). Insulin and glucose levels influence potassium
adenosine triphosphate (K�ATP) channels in the medial proopiomelanocortin (POMC) neurons on the arcuate nucleus and control
neural output to modulate hepatic glucose output (depicted in green). In obesity, the ability to sense these afferent inputs to the
hypothalamus is impaired, resulting in increased or orexigenic signals (decreased satiety) and increased nerve-mediated glucose
output by the liver.
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have an increase in appetite despite high levels of leptin,
which may be related to an obesity-induced attenuated
response to leptin. Thus, the actions of leptin on energy
and food intake are independent of its peripheral (endo-
crine) effects, in which, among other physiologic func-
tions, it also enhances insulin sensitivity and bone den-
sity.83,84 The dysregulation of this sensing pathway may
lead to obesity and diabetes.

Afferent nerve fibers from fat modulate sensitivity of
the CNS to leptin and this effect can be abrogated by
denervation.85 Long-chain fatty acids (released from the
adipocyte) have been added to the growing list of met-
abolic signals that exert physiologic actions on the hy-
pothalamus.83,84 Gut hormones, notably ghrelin, can
activate circuits in the hypothalamus; for example, in-
creased levels of ghrelin augment feeding. Several other
gut hormones also control food intake, and these hu-
moral circuits from fat and gut are dysfunctional in
obesity.83–86 In particular, it has been suggested that
evolutionally conserved fuel sensors, such as adenosine
monophosphate–activated protein kinase and mamma-
lian target of rapamycin, may integrate sensory input
from nutrients, including those derived from food intake
and adipose tissue. These sensors then may use this
input to regulate efferent pathways responsible for fuel
intake and utilization.87

Centrally mediated neural autonomic (sympathetic and
parasympathetic) actions can modulate adipocyte func-
tions. It is well known that fat pads are well innervated
by the sympathetic nervous system, and sympathetic
nerve–mediated lipolysis via the adrenoceptor can lead
to alterations in lipolysis.5,88 There is also evidence that
parasympathetic innervation is involved in the control of
glucose homeostasis, particularly with respect to abdom-
inal fat tissue.89 Using microsurgery, transneuronal
retrograde tracing, and hyperinsulinemic euglycemic
clamp, Kreier et al.90 demonstrated that parasympa-
thetic innervation of fat tissue stimulates fat growth.
They also substantiated preexisting evidence that the
brain controls fat growth by a selective group of neu-
rons. These investigators, in fact, hypothesize that obe-
sity and metabolic syndrome are diseases more of the
brain than of any other organ or system.91 Other inves-
tigators have questioned the validity of the role of the
parasympathetic nervous system.92,93 It is of interest to
note that the autonomic nervous system and the immune
system (e.g., macrophages) cross-talk during inflamma-
tion via the sympathetic and parasympathetic path-
ways.94,95 Details of these interactions and cross-talk and
how these mechanisms are modified in obesity are un-
known.

Insulin and blood glucose levels, known to target liver
glucose output via glycogenolysis and gluconeogenesis,
have now been shown to act on the CNS to control
glucose output by the liver. The studies of Pocai et al.96

show that over and above its direct effects on the liver,

insulin also acts on specialized ion channels called po-
tassium adenosine triphosphate channels located in the
proopiomelanocortin neuron on the arcuate nucleus of
the hypothalamus to control hepatic glucose produc-
tion. By opening and closing these potassium adenosine
triphosphate channels, the hypothalamus controls out-
put to the liver via the vagus, because isolating the
hepatic branches of the vagus obviates this response.
The physiologic significance of this finding is that in-
creases in insulin concentration in response to feeding in
turn decrease the hepatic glucose output. It is also note-
worthy that the ability to sense increased concentrations
of glucose or insulin (e.g., due to feeding) by the pro-
opiomelanocortin neurons in the hypothalamus is defec-
tive in obesity.97 The CNS-mediated hepatic glucose out-
put continues in obese subjects despite high glucose and
high insulin levels, and for this reason may have a patho-
genic role in maintaining the hyperglycemia of obesity.97

The mechanism for obesity-induced loss of glucose sens-
ing by proopiomelanocortin involves uncoupling pro-
tein-2, because pharmacologic inhibition of uncoupling
protein-2 by genipin reverses the loss of glucose sensing.
Sulfonylureas acting on the potassium adenosine triphos-
phate channels in the hypothalamus decrease neural
signal output from the hypothalamus and decrease he-
patic glucose output.82 The physiologic significance in
humans of CNS control of glucose homeostasis in the
liver has not been ascertained.

Therapeutic Choices for Treatment of
Obesity-induced Insulin Resistance

It is now clear that aggressive control of hyperglyce-
mia in patients with diabetes can attenuate the long-term
cardiovascular and renal complications of this dis-
ease.98,99 Exercise, life style modification, and weight re-
duction should go pari passu with pharmacotherapy.100

Exercise seems to increase glucose transport in cells
independent of Akt/PKB, most likely through the aden-
osine monophosphate kinase pathway.101 Although
weight reduction by liposuction in obesity has no effect
on insulin action or risk factors for coronary artery
disease,102 reduction in body weight with gastric by-
pass surgery not only improves the diabetes but also
morbidity and mortality.103–105 The complications re-
lated to gastric bypass surgery, however, are high in
this population.103,104

Metformin is a biguanide. It has a well established,
beneficial effect on peripheral tissues and mitochondrial
function, in which it enhances the oxidation of fat and
glucose presumably by activating adenosine monophos-
phate kinase.106 The thiazolidinediones are a newer class
of insulin-sensitizing drugs that not only increase periph-
eral utilization of glucose and suppress glucose produc-
tion, but also exert pleiotropic effects on fat and inflamma-
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tion.5,107 The thiazolidinediones function as peroxisome
proliferator–activated receptor-� agonists. In severe obe-
sity, the adipose tissue macrophage is switched from its
alternative activated form to its proinflammatory
form.108 The peroxisome proliferator–activated recep-
tor-� agonists prime the adipose tissue, and the macro-
phages revert to the alternative activated form,109 with
improvement of insulin resistance.110 These new find-
ings are consistent with the theory that obesity-in-
duced adipose tissue inflammation is a pivotal media-
tor of insulin resistance (fig. 2) and provide additional
scientific basis for therapy with peroxisome prolifera-
tor–activated receptor-� agonists. Thiazolidinediones,
however, are associated with a high incidence of ad-
verse cardiovascular events, including congestive
heart failure and myocardial infarction, and therefore
caution should be exercised when using these
drugs.111 Additional approaches that could be used to
treat obesity and its effects on hyperglycemia include
drugs that attenuate appetite and enhance energy ex-
penditure. There are several reports of success with
such approaches.7,97,112

GSK-3� inhibitors, which have multipronged effects
on insulin signaling and inflammation as well as glycogen
synthesis, could also prove beneficial. Experimental ev-
idence on GSK-3� inhibitors exists,26,27 but clinical stud-
ies in obesity are lacking. Although salicylates have
proved useful,41 the use of these derivatives in surgical
patients needs careful evaluation. Complications associ-
ated with salicylates, particularly in the high doses rec-
ommended for treatment of diabetes, include gastric
ulceration, increased bleeding, and renal dysfunction.
Future therapeutic regimens probably will include the
use of iNOS inhibitors, which are currently in develop-
ment for human use. The rationale for this line of treat-
ment already has been discussed.

Potential Hyperglycemia-independent Impact
of Insulin Resistance in Critical Illness

Obesity is associated with worse prognosis in patients
with trauma,113 although conflicting results also have
been reported. The deleterious impact of obesity has
been postulated to be attributable, at least in part, to
derangements in metabolic function. Insulin resistance is
a major denominator and a central player of obesity-
related metabolic derangements. Attenuated actions of
insulin result in hyperglycemia, decreased protein syn-
thesis, increased protein degradation, increased suscep-
tibility to infection, and reduced antiapoptotic (prosur-
vival) and antiinflammatory actions of insulin,10–14 all of
which contribute to exacerbation of critical illness. For
critically ill patients with hyperglycemia, therefore, in-
tensive insulin therapy has been employed in intensive
care units to achieve tight glycemic control.9 Although

most of the detrimental effects of insulin resistance may
be substantially reversed by exogenous insulin adminis-
tration, it remains an open question whether intensive
insulin therapy can fully reverse the detrimental effects
of insulin resistance in critical illness, even if tight gly-
cemic control is achieved. Hyperinsulinemia is an inde-
pendent risk factor for the development of atheroscle-
rosis, a major complication in type 2 diabetes. It is
conceivable, therefore, that even if tight glycemic con-
trol without hypoglycemia is achieved by insulin ther-
apy, the combination of hyperinsulinemia and insulin
resistance may elicit some deleterious outcomes in crit-
ically ill patients.

Hyperglycemia is usually a good indicator of insulin
insufficiency. However, there are some exceptions in
the intensive care unit. Rarely, some patients may ex-
hibit euglycemia or even hypoglycemia despite serious
insulin resistance with normal or decreased plasma insu-
lin concentration. Critical illness, such as sepsis and
trauma, induces impaired hepatic glucose production
independent of insulin action, leading to hypoglyce-
mia,114,115 despite the coexisting attenuation of insulin
action caused by insulin resistance. In these cases, al-
though hyperglycemia is not observed, other beneficial
actions of insulin—including anabolic, antiinflammatory,
and antiapoptotic functions—are impaired owing to in-
sulin resistance.

Control of excessive inflammation and subsequent ap-
optotic cell death has been proposed to be of essential
importance to prevent and/or reverse tissue organ fail-
ure. Improvement in insulin sensitivity is accompanied
by decreased inflammation and vice versa. This suggests
that insulin-sensitizing drugs may be candidates for re-
ducing the mortality of critically ill patients by their
ability to improve insulin sensitivity and reverse exces-
sive inflammation. Unfortunately, thiazolidinediones and
metformin, the two clinically approved insulin sensitiz-
ers, cannot always be used for critically ill patients be-
cause of adverse side effects (e.g., edema and heart
failure for thiazolidinediones,116 lactic acidosis for met-
formin117). Therefore, novel types of insulin-sensitizing
drugs, which do not elicit such adverse side effects,
would need to be developed to help improve the mor-
tality of critically ill patients by reversal of inflammation
and insulin resistance.

As discussed in this review, obesity-induced insulin
resistance is closely linked to the inflammatory response
and stress signaling pathways. The implication of hyper-
glycemia in critical illness has been an intense area of
investigation for a number of years.118–120 In contrast,
the glycemic control–independent influence of insulin
resistance in morbidity and mortality of critically ill pa-
tients is poorly understood, although previous studies
have documented the glucose level–independent bene-
ficial effects of insulin in rodent models of critical illness.
Of interest, a recent study121 showed that the severity of
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insulin resistance is associated with the severity of crit-
ical illness and body mass index, although no significant
association was found between insulin resistance and
basal blood glucose level. Thus, a potential hyperglyce-
mia-independent impact of insulin resistance on progno-
sis during and after critical illness is worthy of further
investigation.

Conclusion

For individuals born in the United States in 2000, the
lifetime probability of being diagnosed with obesity and
diabetes is substantial.122 Obesity is an independent risk
factor for cardiovascular disease,1–3 which increases the
risk of perioperative complications. Interventions to re-
duce body weight have beneficial effects on decreasing
cardiac complications in the perioperative period. Hy-
perglycemia and/or insulin resistance are associated
with increased morbidity. Correction of hyperglycemia
in critically ill patients decreases intensive care unit stay
and improves hospital mortality, an effect particularly
evident in surgical patients.122,123 This beneficial effect
is probably related to the pleiotropic effects of insulin on
glucose, protein, and inflammation.10–14 Thus, insulin
resistance in the absence of obesity is also a major risk
factor for surgical patients.119–125 The compounding ef-
fect of obesity further aggravates perioperative morbid-
ity and leads to systemic diseases that affect vital organs
including the brain, kidney, heart, and liver.1,6,12

Obesity-induced diabetes is related to decreased insu-
lin-signaling via IR and its downstream proteins. A
chronic inflammatory state seems to play a pivotal role in
the insulin resistance. Differences do exist in the mech-
anisms of insulin resistance between liver, muscle, and
adipocyte. The role of the CNS in insulin sensors sensing
and glucose homeostasis is now well established. Under-
standing the impairments of insulin-signaling related to
obesity-induced diabetes may lead to better pharmaco-
logic methods, not only to treat but also to prevent
obesity and type-2 diabetes. In this regard, in addition to
behavior modifications that modify food (calorie) intake
or alter the composition of foods ingested, development
of drugs to decrease appetite and increase metabolism
also may prove useful. Recent studies do confirm that
multimodal, multifactorial interventions including be-
havior modifications and surgery have sustained benefi-
cial effects on insulin sensitivity, cardiovascular compli-
cations, and mortality.9,99,100

The authors acknowledge the invaluable assistance of Don Poulsen, Senior
Medical Illustrator, Shriners Hospital for Children, Boston, Massachusetts, for the
artwork presented in the text.
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