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Background: Mechanical ventilation can induce organ injury
associated with overwhelming inflammatory responses. Exces-
sive activation of poly(adenosine diphosphate–ribose) poly-
merase enzyme after massive DNA damage may aggravate in-
flammatory responses. Therefore, the authors hypothesized
that the pharmacologic inhibition of poly(adenosine diphos-
phate–ribose) polymerase by PJ-34 would attenuate ventilator-
induced lung injury.

Methods: Anesthetized rats were subjected to intratracheal
instillation of lipopolysaccharide at a dose of 6 mg/kg. The
animals were then randomly assigned to receive mechanical
ventilation at either low tidal volume (6 ml/kg) with 5 cm H2O
positive end-expiratory pressure or high tidal volume (15 ml/
kg) with zero positive end-expiratory pressure, in the presence
and absence of intravenous administration of PJ-34.

Results: The high-tidal-volume ventilation resulted in an in-
crease in poly(adenosine diphosphate–ribose) polymerase activ-
ity in the lung. The treatment with PJ-34 maintained a greater
oxygenation and a lower airway plateau pressure than the vehicle
control group. This was associated with a decreased level of
interleukin 6, active plasminogen activator inhibitor 1 in the
lung, attenuated leukocyte lung transmigration, and reduced
pulmonary edema and apoptosis. The administration of PJ-34
also decreased the systemic levels of tumor necrosis factor �

and interleukin 6, and attenuated the degree of apoptosis in the
kidney.

Conclusion: The pharmacologic inhibition of poly(adenosine
diphosphate–ribose) polymerase reduces ventilator-induced
lung injury and protects kidney function.

INJURIOUS mechanical ventilation can lead to the devel-
opment of an overwhelming inflammatory response and
multiple organ dysfunction syndrome.1–5 Acute renal fail-
ure is the most prevalent form of distal organ dysfunction
associated with endothelial and epithelial cell death in
patients with ventilator-induced lung injury (VILI).2,6–8

The clinical importance of VILI has been highlighted
in a multicenter clinical trial demonstrating that me-
chanical ventilation with low tidal volume (VT) signif-
icantly decreased cytokine responses, multiple organ
dysfunction syndrome, and mortality rate compared
with high VT in patients with acute respiratory distress
syndrome (ARDS).9,10 However, in situations where a
fully lung protective strategy is not possible, it would
be necessary to use pharmacologic therapies to miti-
gate the consequences of VILI and multiple organ
dysfunction syndrome.

Poly(adenosine diphosphate–ribose) polymerase (PARP)
1 is the most abundant member of PARP family,11 whose
primary role is to sense DNA damage, repair DNA, and
maintain genomic stability.12 However, when severe DNA
injury occurs in response to oxidative stress, excessive
up-regulation of PARP may be detrimental by depleting
cellular adenosine triphosphate stores, resulting in cell dys-
function and death.13–16 This cellular suicide mechanism
has been implicated in the pathophysiology of acute lung
injury,17 acute renal failure secondary to ischemia–reperfu-
sion,18 and sepsis.19 It has been reported that PARP-1 can
directly interact with both subunits of p65 and p50 and
synergistically coactivates nuclear factor �B (NF-�B).20–23

The potent PARP inhibitor PJ-34 can decrease PARP-1 ac-
tivity and thus NF-�B activation in animal models of endo-
toxic and hemorrhagic shock.17–19,24–27

In the current study, we tested the hypothesis that
inhibition of PARP by PJ-34 would attenuate VILI and
preserve kidney function by its antiinflammatory prop-
erty. We demonstrated that high-VT ventilation induced
an increase in PARP activity in the lung associated with
an enhanced inflammatory response. The treatment with
PJ-34 attenuated the mechanical ventilation–induced cy-
tokine responses, decreased the level of active plasmin-
ogen activator inhibitor 1 (PAI-1) in the lung, and re-
duced leukocyte infiltration and pulmonary edema.
Furthermore, inhibition of PARP resulted in fewer kid-
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ney apoptosis and thus preserved renal function during
high-VT ventilation.

Materials and Methods

Animal Preparation
The protocol was approved by the institutional animal

care committee at St. Michael’s Hospital, Toronto, On-
tario, Canada. Thirty-six male Sprague-Dawley rats
(Charles Rivers, St. Constan, Quebec, Canada) weighing
290 � 10 g were anesthetized with intraperitoneal in-
jection of 10 mg/kg xylazine (Bayer, Toronto, Ontario,
Canada) and 100 mg/kg ketamine (Bimeda-MTC, Cam-
bridge, Ontario, Canada). Anesthesia was maintained
with 1 mg · kg�1 · h�1, xylazine and 20 mg · kg�1 · h�1

ketamine via a jugular vein; muscle relaxation was
achieved by intravenous administration of 0.6 mg · kg�1 · h�1

pancuronium bromide (Sabex Inc., Quebec, Canada).
Rats were placed on a heating pad to maintain core
temperature at 37°C. A tracheostomy was performed for
intratracheal cannulation (14 gauge). The right carotid
artery was catheterized for blood sampling and continu-
ous arterial blood pressure measurements. The bladder
was catheterized and sutured using a transabdominal
approach for urine sampling.

Experimental Protocol
The rats were initially ventilated at VT 6 ml/kg and

positive end-expiratory pressure (PEEP) of 5 cm H2O
(Servo 300 ventilator; Siemens, Munich, Germany). After
a baseline arterial blood gas measurement (Corning 248
blood gas analyzer; Ciba Corning, Medfield, MA) to con-
firm similar gas exchange conditions in all animals, lipo-
polysaccharide (055:B5; Sigma-Aldrich, St. Louis, MO) at
a dose of 6 mg/kg in 0.5 ml normal saline was adminis-
tered by using an intratracheal aerosolizer (PennCentury
Inc., Philadelphia, PA). Five minutes later, a recruitment
maneuver was performed by increasing PEEP level to 25
cm H2O for five breaths, followed by 15 min of stabili-
zation under the ventilator settings described above. The
rats were then randomly allocated into four groups (n �
9 each) and ventilated for 4 h: group 1 (low VT � PJ-34):
VT 6 ml/kg, PEEP 5 cm H2O with infusion of PJ-34 (Alexis
Biochemicals, Lausen, Switzerland); group 2 (low VT �
vehicle): VT 6 ml/kg, PEEP 5 cm H2O with the vehicle
solution (normal saline); group 3 (high VT � PJ-34): VT

15 ml/kg, no PEEP with infusion of PJ-34; and group 4
(high VT � vehicle): VT 15 ml/kg, no PEEP with vehicle
solution. Immediately after the randomization, PJ-34 was
administered intravenously as a loading dose of 10
mg/kg over 30 min, followed by continuous infusion at
2 mg · kg�1 · h�1 for the remainder of the experi-
ments.28 Arterial carbon dioxide tension (PaCO2) was
maintained at 40 � 5 mmHg by adjusting respiratory
rate. Inspiration-to-expiration ratio was set to 1:2, and
the fraction of inspired oxygen (FIO2) was 0.45.

Measurements
Arterial blood gases were analyzed 30 min after ran-

domization and hourly thereafter. Urine samples were
collected during the last hour after emptying the urine
tube. Upon completion of the mechanical ventilation,
whole blood was collected for measurements of cyto-
kines and creatinine, and the animals were killed with an
overdose of anesthesia. Lungs and kidneys were har-
vested for histologic examination. Plasma and urine
were stored at �80°C until assayed.

PARP Activity Assay
Poly(adenosine diphosphate–ribose) polymerase activ-

ity (PARP Universal Colorimetric Assay Kit; R&D Sys-
tems, Inc., Minneapolis, MN) was determined in lung
homogenates by following the manufacturer’s instruc-
tion, and the results were expressed as units of PARP per
gram protein.

Bronchoalveolar Lavage and Wet-to-Dry Weight
Ratio
The left upper lobe was excised for histologic exami-

nation. The right middle lobe was used to estimate wet-
to-dry weight ratio, and the right lower lobe was snap
frozen for cytokine measurements. The left lower and
the right upper lobes were lavaged by intratracheal in-
stillation of 2 ml cold phosphate-buffered saline (Sigma-
Aldrich). After 5 s, the bronchoalveolar lavage fluid was
obtained. This procedure was repeated twice.

After centrifugation, the bronchoalveolar lavage fluid
was frozen at �80°C until further analysis. The cell
pellet was resuspended in 1 ml phosphate-buffered sa-
line for cell differentiation by using the Hemacolor Stain
Set (EM Diagnostic System, Gibbstown, NJ).

Measurements of Cytokines, PAI-1 Activity, and
Tissue Factor Activity
Analysis of tumor necrosis factor � (TNF-�) and inter-

leukin 6 (IL-6) in plasma, lung, and kidney homogenates
was performed in a blinded fashion using rat-specific
enzyme-linked immunosorbent assay kits (BioSource In-
ternational, Camarillo, CA) at 450 nm (Multiskan Asscent
microplate photometer; Thermo Lab Systems, Helsinki,
Finland). PAI-1 activity (Innovative Research, Inc., South-
field, MI) and tissue factor activity (American Diagnos-
tica Inc., Stamford, CT) were determined in plasma and
lung homogenates. The tissue factor activity kit is spe-
cific for human but crossly reacts with rat tissue factor.29

Total protein concentration in lung and kidney homog-
enates was determined by a Bradford assay (Bio-Rad
Laboratories, Inc., Hercules, CA) using bovine serum
albumin to construct a standard curve.

Lung and Kidney Apoptosis
Apoptosis was quantified from paraffin sections of lung

and kidney by terminal deoxynucleotidyltransferase-me-
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diated dUTP nick end labeling (TUNEL) assay. Hematox-
ylin staining for nucleus was also performed to identify
individual cell. Twelve fields randomly chosen in each
section were read in a blinded fashion. An apoptotic
index was calculated as [100% � (TUNEL-positive cells)/
(total cells)].

Caspase-3 Enzymatic Activity
Caspase-3 activity was determined in lung and kidney

homogenates (Caspase-3 Colorimetric Assay kit; R&D
Systems, Inc.). Recombinant human caspase-3 enzyme
was used to construct a standard curve (R&D Systems,
Inc.). Results were normalized to protein levels.

Lactate Dehydrogenase Assay
The lactate dehydrogenase assay (Cytotoxicity Detec-

tion Kit; Roche Applied Science, Mannheim, Germany)
was performed at 492 nm.

Histology
The lung injury scores, including alveolar collapse,

perivascular hemorrhage, alveolar hemorrhage, perivas-
cular edema, vascular congestion, alveolar polymorpho-
nuclear leukocytes, membranes, alveolar edema, macro-
phages, and bronchial epithelial lesions, were performed
by a pathologist who was unaware of the experimental
groups. Five regions from each specimen were exam-
ined, and an injury score of 0–3 (0 � normal; 1 � mild;
2 � moderate; 3 � severe) was assigned and then cal-
culated for a total score of lung injury.

Creatinine Clearance
Creatinine clearance was calculated over the last hour of

experiments using the formula CC � UCr � V/PCr, where
UCr represents the creatinine concentration in urine (mM),
V represents the urine flow (ml/min), and PCr represents
the creatinine concentration in plasma (mM).

Statistics
Results are reported as mean � SEM. Data were

analyzed in nonparametric tests by using the Prism
Graphpad 4.0 software package (Prism, San Diego,
CA). Comparison among groups was performed using
the Kruskal-Wallis test. When an overall P value was less
than 0.05, a Dunn multiple-comparison post hoc analysis
was conducted. A P value less than 0.05 was considered
statistically significant.

Results

Effects of PJ-34 on Hemodynamics, Gas Exchange,
and Respiratory Mechanics
Mean arterial pressures were similar at baseline and

during the experiments among groups (fig. 1A), as was
fluid administration (low VT � vehicle: 1.4 � 0.1 ml/h;
low VT � PJ-34: 1.5 � 0.1 ml/h; high VT � vehicle: 1.7 �
0.1 ml/h; high VT � PJ-34: 1.4 � 0.1 ml/h; P � not
significant). Airway plateau pressure was higher in the
high-VT groups, which was attenuated by the treatment
with PJ-34 (fig. 1B). Mean values of arterial carbon diox-
ide tension (PaO2)/FIO2 ratio were similar in all animals
until the second hour of mechanical ventilation, when
the PaO2/FIO2 ratio decreased in the high-VT group with-
out PJ-34 treatment compared with the other groups (fig.
1C). There were no differences in the levels of PaCO2 (fig.
1D), pH, and bicarbonate among groups (data not
shown).

Effect of PJ-34 on PARP Activity
Poly(adenosine diphosphate–ribose) polymerase activ-

ity was increased in the high-VT group compared with
the low-VT group. The treatment with PJ-34 decreased
the PARP activity (fig. 2A).
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Fig. 1. Effects of PJ-34 on arterial pressure
and respiratory variables during me-
chanical ventilation. The rats received li-
popolysaccharide at time 0, followed by
mechanical ventilation. n � 9/group. (A)
Mean arterial pressure (MAP) over time.
(B) Plateau pressure over time. HTV �
high tidal volume; LTV � low tidal vol-
ume. (C) Arterial oxygen tension (PaO2)/
fraction of inspired oxygen (FIO2) ratio
over time. (D) Arterial carbon dioxide
tension (PaCO2) over time. * P < 0.05, LTV �
vehicle versus HTV � vehicle and HTV �
vehicle versus HTV � PJ-34 at time 240
min.
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Effect of PJ-34 on Leukocyte Migration and Lung
Injury
The leukocyte count in bronchoalveolar lavage fluid

and the mean value of the lung wet-to-dry weight ratio
were greater in the high-VT than in the low-VT group,
and the treatment with PJ-34 attenuated leukocyte mi-
gration in the lung and lung edema (figs. 2B and C).
Although the lung injury score had a similar pattern as
the wet-to-dry weight ratio, the differences did not sta-
tistical reach significance (fig. 2D).

Effect of PJ-34 on Production of Cytokines and
Coagulation Variables
Lung Tissue. Tumor necrosis factor � is an early and

central cytokine in response to tissue injury.30,31 IL-6 has
been used to guide therapeutic intervention in clinical

trials.32,33 We found no differences in TNF-� among
groups, but IL-6 levels were higher in the high-VT group
than in the other groups, and the treatment with PJ-34
decreased IL-6 level to control levels (figs. 3A and B).

Previous studies demonstrated that ARDS was associ-
ated with increased coagulation and decreased fibrino-
lysis.34,35 PAI-1 is a main component in the antifibrino-
lytic system, and tissue factor may initiate the extrinsic
coagulation pathway. We observed that the PAI-1 activ-
ity of the lung increased in the high-VT group than in the
other groups, and the treatment with PJ-34 normalized
PAI-1 levels at a control level (fig. 3C). There was no
significant difference in tissue factor activity among the
groups (fig. 3D).

Plasma. Plasma levels of TNF-� and IL-6 increased in
the high-VT group compared with the low-VT group,

0

25

50

75

100
‡

B

C
el

l C
ou

nt
 (1

04 /m
L)

0

1

2

3

4

5

6

7 C
‡

W
et

 to
 D

ry
 R

at
io

LTV+
Vehicle

LTV+
PJ-34

HTV+
Vehicle

HTV+
PJ-34

0

1

2

3

4

5

6

7 D

Lu
ng

 in
ju

ry
 sc

or
e

LTV+
Vehicle

LTV+
PJ-34

HTV+
Vehicle

HTV+
PJ-34

0

2

4

6

8

10

*
*

†

PA
R

P 
ac

tiv
ity

(u
ni

ts
/g

 p
ro

te
in

)

A

Fig. 2. Effects of PJ-34 on poly(adenosine
diphosphate–ribose) polymerase (PARP)
activity, inflammatory cell counts, and
lung injury. (A) PARP activity (U/g pro-
tein) in lung homogenate after 4 h of
ventilation. HTV � high tidal volume; LTV �
low tidal volume. (B) Leukocyte cell
counts in lung lavage after 4 h of ventila-
tion. (C) Lung wet-to-dry weight ratio. (D)
Lung injury score. * P < 0.05, LTV � ve-
hicle versus LTV � PJ-34, and HTV � ve-
hicle versus HTV � PJ-34. † P < 0.05,
LTV � vehicle versus HTV � vehicle.
‡ P < 0.05, HTV � vehicle versus others.
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Fig. 3. Effects of PJ-34 on the cytokine
levels and coagulation variables in lung.
The levels of tumor necrosis factor �
(TNF-�; A), interleukin 6 (IL-6; B), active
plasminogen activator inhibitor 1 (PAI-1;
C), and tissue factor (D) were measured
in lung homogenate after 4 h of ventila-
tion. HTV � high tidal volume; LTV � low
tidal volume. * P < 0.05, HTV � vehicle
versus HTV � PJ-34 or LTV � vehicle.
† P < 0.05, HTV � vehicle versus others.
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which was blunted by the administration of PJ-34 (figs.
4A and B). The expression of PAI-1 and tissue factor
activity was similar in all of the groups (figs. 4C and D).

Kidney Tissue. There were no significant differences
in the levels of TNF-�, IL-6, PAI-1, and tissue factor
activity between the high-VT and low-VT groups irrespec-
tive of PJ-34 treatment (data not shown).

Organ Apoptosis
Lung Tissue. Figure 5A shows a representative image

of the TUNEL staining to detect apoptosis. The apoptotic
index (defined as percentage of TUNEL-positive cells
divided by the total cells) was higher in the high-VT

group than in the other groups, and the treatment with
PJ-34 reduced the apoptotic index (fig. 5B). This obser-
vation was in agreement with a decreased caspase-3
activity in the high-VT group treated with PJ-34 (fig. 5C).
This observation was further confirmed by an increased
level of lactate dehydrogenase activity as an index of cell
death in the high-VT group compared with the low-VT

group, and treatment of PJ-34 decreased lactate dehydro-
genase activity (fig. 5D).

Kidney Tissue. The degree of apoptosis was greater
in the high-VT group than in the other groups, and there
seemed to be more apoptotic cells in the medulla com-
pared with the cortex (figs. 6A–C). The greater number
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of apoptotic cells was associated with higher levels of
caspase-3 activity (fig. 6D). The administration of PJ-34
reduced the apoptotic index as well as the caspase-3 activ-
ity (figs. 6A–D). The decreased apoptotic index was asso-
ciated with an increased creatinine clearance (fig. 6E).

Discussion

The current study provides evidence that PARP activa-
tion plays an important role in the development of VILI
and inflammatory responses during mechanical ventila-
tion after lipopolysaccharide priming. Inhibition of PARP
with PJ-34 reduced lung injury and inflammatory re-
sponses and preserved kidney function.

Sepsis-associated ARDS shows the highest mortality
rate in the ARDS population36,37; mortality is lower
when ARDS occurs after gastric aspiration, trauma, or fat
embolism.38 A higher incidence of ARDS is present in
patients with sepsis where overwhelming inflammatory
responses have taken place.36,37 To portray this clinical
situation, we used a two-hit model combining an initial
lipopolysaccharide instillation to induce pulmonary in-
flammation, followed by mechanical ventilation. The

choice of VT was based on certain clinical applications, i.e.,
a VT of 6 ml/kg has been suggested to ventilate patients
with ARDS,9 and a VT of 15 ml/kg is reportedly used in
patients without previous lung injury subjected to a short-
term mechanical ventilation.39 Similar to other two-hit
models such as acid aspiration and ischemia–reperfusion
followed by high-VT ventilation,2,6 we observed an in-
creased plateau pressure, a lower PaO2/FIO2 ratio and an
enhanced pulmonary and systemic inflammatory response,
and distal organ dysfunction. Because ARDS is implicated
with inflammatory responses, we believe that the results
observed in the current two-hit model may also apply to a
single-hit of ARDS resulting from pulmonary source.

We demonstrated in the current model an increased
PARP activity in the lung of the animals ventilated with
high VT compared with the low-VT group. PARP inhibi-
tion by PJ-34 attenuated inflammatory responses and
protected lung and kidney function. We believe that the
mechanisms by which PJ-34 exerted beneficial effects in
our model are through inhibition of both PARP and
NF-�B activity. It has been shown that pharmacologic
inhibition of PARP attenuated the DNA-binding capacity
and subsequent reduction of NF-�B transcriptional activ-
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Fig. 6. Effects of PJ-34 on kidney apopto-
sis and function. (A) Representative ter-
minal deoxynucleotidyltransferase-medi-
ated dUTP nick end labeling staining in
kidney cortex and medulla. Apoptotic
cells are identified by the presence of
brown staining (dark dots). Hematoxylin
staining was also performed to identify
individual nuclei. HTV � high tidal vol-
ume; LTV � low tidal volume. (B) Apopto-
tic index in cortex. The apoptotic index
was expressed as the percentage of posi-
tive nuclei. (C) Apoptotic index in me-
dulla. (D) Caspase-3 activity in kidney ho-
mogenate. (E) Creatinine clearance (CC)
was measured over the last hour of me-
chanical ventilation. CC � UCr � V/PCr,
where UCr represents the creatinine con-
centration in urine (mM), V represents
the urine flow (ml/min), and PCr repre-
sents the creatinine concentration in
plasma (mM). * P < 0.05, HTV � vehicle
versus others. † P < 0.05, HTV � vehicle
versus HTV � PJ-34.
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ity.40–43 The expression of NF-�B–dependent proinflam-
matory mediators was decreased in PARP-1–deficient
mice.20,23 It has been suggested that PARP binds NF-�B
after the translocation of the �B heterodimer in the nucleus
at the stage of the formation of the transcription complex,
altering DNA binding affinity to NF-�B.23,44 These studies
suggest that NF-�B could be a downstream pathway of
PARP-1. Interestingly, other studies reported that neither
enzymatic activity nor the DNA-binding activity of PARP-1
was required for NF-kB–dependent transcriptional activa-
tion.21 We did not measure NF-�B activation in the current
study, but we and others have previously shown that me-
chanical ventilation resulted in NF-�B translocation in the
lung of animal models of acute lung injury and ARDS.45,46 It
has been demonstrated that inhibition of NF-�B transloca-
tion resulted in a reduction in VILI by using other pharma-
cologic interventions, such as phosphoinositide 3-OH ki-
nase inhibitor and genistein.46–49

Pharmacologic inhibition of PARP has been investi-
gated in a variety of experimental conditions of acute
lung injury and lipopolysaccharide-induced organ in-
jury.17,28,50 –52 When mice were subjected to intratra-
cheal injection of lipopolysaccharide for 24 h, the treat-
ment with PJ-34 attenuated lung injury by reducing
leukocyte extravasation and pulmonary inflammation.50

In an ovine pneumonia model, treatment with PARP
inhibitor INO-1001 preserved lung histology after intra-
bronchial injection of Pseudomonas aeruginosa bacte-
ria associated with an increased oxygenation and a bet-
ter respiratory mechanic.51 The administration of the
PARP inhibitor 3-aminobenzamide protected against en-
dothelial dysfunction in a rat model of endotoxic
shock.52 Moreover, it has been reported that PJ-34 im-
proved survival rate and cardiovascular function in a pig
model of sepsis induced by Escherichia coli.28 Our re-
sults are in accord with the previous studies to support
the concept that PARP plays an important role in the
development of inflammation. We further expand the
previous studies by demonstrating that inhibition of
PARP can attenuate mechanical ventilation–associated
biotrauma in the context of VILI.

It has been shown that lung parenchymal cells pro-
duce proinflammatory cytokines in response to tissue
stretch contributing to VILI.53 Damage to the alveolar–
capillary barrier in combination with release of inflam-
matory cytokines is thought to be a major contributor to
the development of multiple organ dysfunction syn-
drome and death.54 Our data demonstrate that PARP
inhibition can attenuate IL-6 release in the lung, and
attenuate concentrations of both TNF-� and IL-6 in the
circulation. These results are consistent with previous
reports demonstrating that inhibition of PARP resulted in
a down-regulation of chemokines and cytokines in sev-
eral animal models of lung injury.50,55,56 A decreased
level of IL-6 might have led to an attenuated expression
of PAI-1 in the lungs after PJ-34 treatment.57

Leukocyte transmigration is an important feature of
diffused alveolar damage characterizing VILI.58 We find
that PARP inhibition reduced leukocyte infiltration in the
lung, decreased permeability, and improved oxygen-
ation and respiratory mechanics. Other studies have re-
ported a role of PARP in the inhibition of leukocyte
trafficking in conditions such as inflammation, shock,
and ischemia–reperfusion injury.50,59,60

We have previously observed some degree of lung
epithelial apoptosis with dominant expression of necro-
sis in an acid-induced acute lung injury model in rabbits
undergoing ventilation with a high VT.2 In the current
study, our results show higher levels of apoptosis than of
necrosis in the lungs. We also noted that in the kidneys,
the baseline apoptosis rate was approximately 10%, and
increased to 30–40% with high VT, which is higher than
that observed in the acid aspiration model in rabbits.7

The differences are likely due to the different priming
stimuli, because acid aspiration resulted in a more severe
and direct lung injury, whereas lipopolysaccharide in-
duced more systemic effects. Also, the ventilatory strat-
egies were somewhat different where higher PEEP levels
were used in the low-VT group and some PEEP level was
applied in the high-VT group in the previous study,7

compared with the current study. Finally, the species
difference might have a role with respect to organ sen-
sitivity in response to mechanical ventilation. Of inter-
est, we observed that the administration of PJ-34 re-
duced apoptosis in the kidney. The exact mechanisms
remain to be elucidated, but PARP-deficient mice are
protected against ischemic renal injury.18,61

In conclusion, we demonstrated that mechanical ventila-
tion can induce PARP activation, and the pharmacologic
inhibition of PARP reduced inflammatory responses and VILI
and preserved kidney function in the rat model of lipopoly-
saccharide priming followed by mechanical ventilation.
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