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Ethnicity Can Affect Anesthetic Requirement

LABORATORY investigations in model organisms show
that changes in genes can influence inhaled anesthetic
requirement. For example, in Caenorhabditis elegans, mu-
tations in unc-1/stomatin1 and syntaxin2 affect anesthetic
requirement; in Drosophila, alterations in genes coding for
particular ABC transporters can affect responses to anes-
thetic3; in mice, mutations in glycine receptors,4 two-pore
domain potassium channels,5 and stomatin1 change mini-
mum alveolar concentration (MAC). These genetic modifi-
cations are by and large engineered into animals to discover
how anesthetics work, and have little immediate relevance
to the conduct of clinical anesthesia in humans. But even in
normal healthy populations, there is evidence of genetic
influences on anesthetic requirement. Among inbred labo-
ratory mice, MAC varies depending on the strain.6 Red-

headed human patients have a higher MAC than other
patients,7 probably either because variants of genes that
govern hair color (e.g., melanocortin8) affect MAC, or genes
closely linked to those determining hair color affect MAC.
In this issue of ANESTHESIOLOGY, Ezri et al.9 build on this
background and show that ethnicity can influence MAC.

These investigators determined sevoflurane MAC in three
ethnic groups of Jewish patients undergoing surgery: Euro-
pean Jews, Oriental Jews, and Jews from the Caucasus
Mountain region. The patients were demographically sim-
ilar except for ethnicity. They found that MAC between
groups varied by up to 24%, with European Jews having the
lowest MAC, Caucasian Jews having the highest MAC, and
Oriental Jews being in between.

What can account for this variability? In broad terms, the
variability may be (1) technical, e.g., from measurement
error; (2) genetic, as discussed above; (3) nongenetic but
biologic, a category that includes many well-known factors
affecting MAC such as temperature, pregnancy, circadian
rhythms, and age; (4) environmental factors such as drug
use and diet; and (5) gene–environment interactions,
which may be important to many disease and behavioral
phenotypes. Ezri et al.9 are circumspect in ascribing a
biologic basis for their observations. But by performing a

This Editorial View accompanies the following article: Ezri T,
Sessler D, Weisenberg M, Muzikant G, Protianov M, Mascha E,
Evron S: Association of ethnicity with the minimum alveolar
concentration of sevoflurane. ANESTHESIOLOGY 2007; 107:9–14.
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blinded study with the same investigators at a single hos-
pital, they have greatly reduced the possibility of systematic
technical errors. Similarly, by studying patients at the same
time of day, excluding pregnant patients, and excluding
patients with a history of chronic pain or analgesic or
sedative drug use, they eliminated several potential con-
founders. In fact, by carefully limiting sources of variability,
they make a reasonable case for a genetic basis for the
described ethnic differences in MAC, although, as they
note, this will require further study.

Let us suppose that different variants (alleles) of genes
that are important to MAC are indeed present in the three
ethnic groups studied and account at least in part for the
difference in MAC that was found. Can the MAC differ-
ences in these populations be used to identify these genes?
Using traditional approaches, probably not. These ap-
proaches use either linkage analysis or a candidate gene
approach. Linkage analysis is used to identify alleles of
genes associated with higher or lower values of phenotype
such as MAC. This would require a pedigree of related
individuals with different MACs, rather than groups of un-
related individuals, a pedigree that has never been identi-
fied. Candidate gene studies use a knowledge of biochem-
istry and physiology to identify genes that may plausibly
affect phenotype. This technique is best pursued in animals
rather than in humans, where genes can be manipulated
and their effect can be measured directly. Indeed, this
approach has been actively pursued in mice in studies of
inhaled anesthetic mechanisms for approximately a de-
cade, with mixed results.10

The study by Ezri et al.9 nonetheless arrives at a propi-
tious time. New techniques, based on recent advances in
genomics, can now be applied to populations of unrelated
individuals to identify the genetic basis for phenotypic (e.g.,
MAC) differences. Two developments have enabled this to
happen. The first is DNA array technology, permitting
rapid, accurate identification of single nucleotide differ-
ences in DNA sequences (called single nucleotide poly-
morphisms [SNPs]). Current commercially available tech-
nology allows the genotyping of hundreds of thousands of
SNPs per subject. The second is the work of the Interna-
tional HapMap project.11 This consortium seeks to group
adjoining SNPs that are inherited together into blocks
called haplotypes. The theoretical reason for doing this is
that cataloging haplotypes should ultimately permit pat-
terns of inheritance of genetic variants that underlie drug
and disease susceptibility to be identified. Practically, this
knowledge reduces the amount of genotyping required in
any gene association study: Because SNPs within a haplo-
type are inherited together, only one SNP need be geno-
typed for each haplotype. Of note to the study by Ezri et
al.,9 these haplotypes are identified by SNP genotyping of
individuals from different ethnic groups.

These technologies enable a conceptually simple study
design. First, measure MAC in a large number of subjects.

Second, exhaustively genotype subjects at one SNP per
haplotype block. Third, determine which haplotype blocks
are associated with higher and lower MAC: Genes within
those haplotype blocks should underlie the difference in
MAC in the study population. A recent genome-wide asso-
ciation study of type 2 diabetes mellitus12 provides a proof
of principle for this type of investigation. In this study,
almost 1,400 subjects (affected individuals plus controls)
were studied. Subjects were genotyped at approximately
400,000 unique SNPs. The study confirmed an association
with a previously identified zinc transporter. More impor-
tantly, it found associations with another zinc transporter
expressed only in the secretory vesicles of insulin-produc-
ing � cells, and two haplotype blocks containing genes
involved in pancreatic development. The finding of new
genes whose variants affect the development of type 2
diabetes mellitus illustrates the power of genome-wide as-
sociation studies. Although the logistic issues of performing
such a study with inhaled anesthetics would be formidable,
the identification of ethnic groups with differences in MAC
opens the door to identifying genes determining anesthetic
sensitivity via a genome-wide association study in humans.

James M. Sonner, M.D., Department of Anesthesia and
Perioperative Care, University of California, San Francisco, California.
sonnerj@anesthesia.ucsf.edu
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