
Anesthesiology 2006; 105:746–52 Copyright © 2006, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Adding Bupivacaine to High-potassium Cardioplegia
Improves Function and Reduces Cellular Damage of Rat
Isolated Hearts after Prolonged, Cold Storage
James D. Ross, B.A.,* Richard Ripper, C.V.T.,† William R. Law, Ph.D.,‡ Malek Massad, M.D.,§ Patricia Murphy, B.A.,�
Lucas Edelman, B.A.,# Beth Conlon, M.S.,* Douglas L. Feinstein, Ph.D.,** June W. Palmer, Ph.D.,††
Guido DiGregorio, M.D.,‡‡ Guy L. Weinberg, M.D.§§

Background: Bupivacaine retards myocardial acidosis during
ischemia. The authors measured function of rat isolated hearts
after prolonged storage to determine whether bupivacaine im-
proves cardiac protection compared with standard cardioplegia
alone.

Methods: After measuring cardiac function on a Langendorff
apparatus, hearts were perfused with cardioplegia alone (con-
trols), cardioplegia containing 500 �M bupivacaine, or cardio-
plegia containing 2 mM lidocaine; were stored at 4°C for 12 h;
and were then reperfused. Heart rate and left ventricular devel-
oped pressures were measured for 60 min. Maximum positive
rate of change in ventricular pressure, oxygen consumption,
and lactate dehydrogenase release were also measured.

Results: All bupivacaine-treated, four of five lidocaine-treated,
and no control hearts beat throughout the 60-min recovery
period. Mean values of heart rate, left ventricular developed
pressure, maximum positive rate of change in ventricular pres-
sure, rate–pressure product, and efficiency in bupivacaine-
treated hearts exceeded those of the control group (P < 0.001 at
60 min for all). Mean values of the lidocaine group were inter-
mediate. Oxygen consumption of the control group exceeded
the other groups early in recovery, but not at later times. Lactate
dehydrogenase release from the bupivacaine group was less
than that from the control group (P < 0.001) but did not differ
from baseline.

Conclusions: Adding bupivacaine to a depolarizing cardiople-
gia solution reduces cell damage and improves cardiac function
after prolonged storage. Metabolic inhibition may contribute to
this phenomenon, which is not entirely explained by sodium
channel blockade.

CARDIAC transplantation is the treatment of last resort
for end-stage heart disease.1 Limits to the acceptable
time for preserving donor hearts in a no-flow state re-
strict the distance a donor heart can be transported after
harvest and therefore also limit the number of potential
recipients for a given heart.1,2 Methods to improve car-
diac preservation after harvest have been a focus of
intense scientific investigation for more than three de-

cades. Current mainstays of cardiac protection combine
hypothermia and depolarizing (high-potassium) cardio-
plegia to reduce myocardial oxygen consumption. How-
ever, hyperpolarizing cardioplegia with adenosine, po-
tassium channel openers, or local anesthetics may have
advantages compared with standard depolarizing solu-
tions because myocardial resting membrane potential is
maintained at normal levels, reducing injurious trans-
membrane fluxes of sodium and calcium ions.3

Bupivacaine is a potent local anesthetic4 with a profile
of cardiac toxicity that would seem to preclude its use
for cardiac preservation. However, infusion of a triglyc-
eride emulsion can rapidly reverse bupivacaine-induced
asystole in both rats and dogs, suggesting that bupiva-
caine toxicity is not inherently irreversible.5,6 Bupiva-
caine also retards the onset and progression of myocar-
dial acidosis during no-flow states in vivo,7 consistent
with the finding that lipid reversal can restore normal
hemodynamics even after prolonged “downtime.” These
observations suggest, contrary to its toxic profile, that
bupivacaine might confer some degree of protection
against ischemic myocardial damage. Here, we studied
rat isolated hearts to ascertain whether addition of bu-
pivacaine to a high-potassium storage solution and sub-
sequent reversal with a lipid emulsion improves cardiac
function after prolonged, cold storage.

Materials and Methods

Rats
Adult male Sprague-Dawley rats, weighing between

450 and 550 g (3–4 months old) were used in all exper-
iments. All protocols were approved by the Animal Care
Committee of the University of Illinois Office for Protec-
tion of Research Subjects and by the Institutional Animal
Care and Use Committee of the Veterans Affairs Chicago
Healthcare System (Chicago, Illinois).

Isolated Heart Systems
Rats were anesthetized by intraperitoneal injection of

60 mg/kg sodium pentobarbital (Abbott Labs, Abbott
Park, IL), and after systemic heparinization, hearts were
removed, cannulated through the ascending aorta, sus-
pended from a Langendorff apparatus, and retrograde
perfused at a constant pressure of 80 mmHg with Krebs
Ringer’s bicarbonate buffer (KRB) containing 100.00 mM

NaCl, 4.74 mM KCl, 1.18 mM KH2PO4, 1.18 mM MgSO4,
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1.00 mM CaCl2, 25.00 mM NaHCO3, 11.50 mM glucose,
4.92 mM pyruvate, and 5.39 mM fumarate, pH 7.40 via
roller pump. KRB perfusate was warmed in the Langen-
dorff apparatus by countercurrent flow from a 37°C
water bath, and the temperature of the KRB was contin-
uously measured just above the heart and maintained at
37°C. The heart was suspended inside a glass cylinder
warmed by the same countercurrent. KRB was also
equilibrated with a 95%–5% mixture of oxygen and car-
bon dioxide by passage through a membrane oxygen-
ator.

Storage and Recovery
Pressure data from a latex balloon in the left ventricle

connected to a pressure transducer were recorded, ar-
chived, and analyzed by Powerlab Data Analysis System
using Chart 5.2.1 (ADInstruments, Colorado Springs,
CO). A catheter was placed in the pulmonary artery to
sample outflow from the coronary circulation for deter-
mining partial pressure of oxygen. After 15 min of equil-
ibration, the ventricular balloon was deflated (to left
ventricular [LV] diastolic pressure of �10 mmHg) to
prevent damage caused by diastolic contracture during
storage. Hearts in the control group were arrested by
injecting, over 30 s, 20 ml of a 37°C, high-potassium
cardioplegia solution (Plegisol; Abbott Labs), containing
110.0 mEq/l sodium, 160.0 mEq/l chloride, 16.0 mEq/l
potassium, 2.4 mEq/l calcium, and 32.0 mEq/l magne-
sium. Test hearts were treated similarly but with either
500 �M bupivacaine or 2 mM lidocaine (concentration
equipotent to bupivacaine) added to the same cardiople-
gia solution. This concentration of bupivacaine was cho-
sen because in isolated mitochondria it completely in-
hibits respiration supported by fatty acids, a possible
mechanism of cardiac protection (see Discussion) with-
out interfering with pyruvate-supported respiration.
Therefore, the bupivacaine concentration is not high
enough to impair substrate-independent components of
oxidative phosphorylation such as electron transport or
chemiosmotic force. There were five hearts in each
group, and the assignment of each heart to one of the
three treatment groups was randomized and the investi-
gators were blinded to the assignment. Perfusion with
control and test solutions rapidly induced asystole in all
hearts. Hearts were then removed from the Langendorff
apparatus, placed in a beaker containing chilled cardio-
plegia solution (without local anesthetic), and stored in
a 4°C refrigerator for 12 h.

Hearts were gradually warmed during recovery by
swirling the storage beaker in a 37°C water bath until the
custodial cardioplegia solution reached 35°C (approxi-
mately 5 min). The hearts were then remounted onto the
Langendorff apparatus and perfused at approximately 40
mmHg over 90 s with 20 ml of 37°C “reversal” solution.
This solution was a mixture of 16 ml KRB, 4 ml Univer-
sity of Illinois Cardioplegia C (Central Admixture Phar-

macy Services, University of Illinois, Chicago, IL), and 1
ml soybean oil emulsion, 20% (Intralipid; Abbott Labs).
The final composition of the “reversal” solution was
122.40 mM NaCl, 9.79 mM KCl, 0.80 mM CaCl2, 0.94 mM

MgSO4, 0.94 mM KH2PO4, 9.20 mM glucose, 3.94 mM

pyruvate, 4.31 mM fumarate, 13.58 mM tromethamine,
11.20 mM glutamate, 11.20 mM aspartate, 0.64% dex-
trose, and a final triglyceride concentration of approxi-
mately 1% wt/vol. Glutamate, pyruvate, fumarate, and
aspartate are metabolic intermediates added to replenish
substrates depleted during storage and to support respi-
ration. Lipid emulsion was included to reverse the car-
diac depressant effects of bupivacaine and was injected
in all hearts to control for possible positive or negative
inotropic effects of triglycerides. Hearts were then per-
fused with 37°C KRB at 80 mmHg. After 15 min, the LV
balloon was inflated to LV diastolic pressure of 10 mmHg
to establish a unified baseline preload. Parameters of
cardiac function were recorded at 15, 30, 45, and 60
min.

Metabolic and Functional Parameters
Heart rate, left ventricular developed pressure

(LVdevP; � systolic pressure � diastolic pressure), max-
imum positive rate of change in LV pressure (dP/dtmax),
and rate–pressure product (� heart rate � LVdevP)
were continuously monitored for 1 h after reperfusion
on the Langendorff apparatus (for 15 min before increas-
ing LV diastolic pressure and 45 min thereafter). The
perfusate was sampled above the heart and from the
pulmonary artery catheter to calculate oxygen consump-
tion (� coronary flow � 0.024 � [arterial partial pres-
sure of oxygen � venous partial pressure of oxygen]).
Lactate dehydrogenase (LDH) activity was measured in
the pulmonary artery effluent with a colorimetric en-
zyme assay (Cytotox96; Promega, Madison, WI) where
optical density at 490 nm provides a quantitative mea-
sure of LDH activity after 30 min of incubation with an
assay solution. To compensate for variation in LDH con-
centration due to differences in coronary perfusion, the
optical density (OD; absorbance/ml) was multiplied by
the perfusion rate (ml/min). Resulting rates of LDH re-
lease were then compared using an arbitrary unit, OD/
min.

Statistical Analysis
All data sets were imported and analyzed in GraphPad

Prism 4 (GraphPad Software, San Diego, CA). Rate–pres-
sure product, dP/dtmax, LVdevP, heart rate, and oxygen
consumption were analyzed for the three treatment
groups at baseline with one-way analysis of variance
(ANOVA). During the recovery phase, these parameters
were analyzed over multiple time points using two-way
ANOVA with a two-tailed Bonferroni posttest (� set at
0.05). LDH release was compared among the three
groups at the end of the recovery period (60 min) by
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one-way ANOVA with Bonferroni multiple comparison
posttest.

Results

Pilot studies in 12-h preservation were performed us-
ing hearts arrested with high potassium alone (n � 7)
and hearts arrested with high potassium containing bu-
pivacaine (n � 8). These hearts were electrically paced,
and no metabolic parameters were measured. After 12 h
of cold storage, only one control heart exhibited orga-
nized contractile activity when stimulated at 300 beats/
min. Three of seven control hearts exhibited dysrhyth-
mic, poorly organized contractions but did not pace
with electrical stimulation, and three others showed no
contractile recovery. After recovery from cold storage,
six of the eight bupivacaine-treated hearts exhibited
rhythmic, spontaneous contractions and were able to be
electrically paced. The remaining two bupivacaine-
treated hearts also exhibited rhythmic, spontaneous con-
tractions but could not be electrically stimulated to the
same rate. Bupivacaine-treated hearts demonstrated sig-
nificantly better postrecovery contractility than control
hearts when comparing rate–pressure products (data
not shown). These studies and subsequent results were
used to refine the current protocol, described in the
Materials and Methods, where we added a second exper-
imental group treated with equipotent concentrations of
lidocaine, eliminated electrical pacing to study sponta-
neous rhythmicity, and examined metabolic parameters
of cardiac function.

Baseline measures of cardiac performance, LDH re-
lease, and oxygen consumption were not different in the
three experimental groups (table 1; n � 5 for all groups).
However, 30 min after warming and reperfusion, differ-
ences in metrics of both categories became apparent.
Three of five hearts in the control group never con-
tracted, and all the control hearts stopped beating by the
60-min time point. All bupivacaine-treated hearts beat
spontaneously by the 15-min time point, and all lido-
caine-treated hearts were beating by 30 min. One lido-
caine-treated heart stopped beating by the end of the

experiment; all hearts treated with bupivacaine beat
throughout the observed times.

Functional Parameters
Heart rate (fig. 1A) and LVdevP (fig. 1B) were analyzed

for the three groups at four time points (n � 5 for all
groups). Significant differences in heart rate were found
between the control and bupivacaine groups at 45 min

Table 1. Baseline Values of Key Parameters for the Three Groups

Control (n � 5) Bupivacaine (n � 5) Lidocaine (n � 5)

Heart rate, beats/min 265 � 14 300 � 6.3 267 � 9.1
dP/dtmax, mmHg/s 2,080 � 175 2,122 � 105 2,288 � 106
LVdevP, mmHg 105 � 8.3 96.8 � 3.1 116 � 4.7
Rate–pressure product, mmHg · beats�1 · min�1 27,060 � 1,159 31,010 � 1,541 30,610 � 1,412
Oxygen consumption, �l · min�1 · g�1 144 � 20.2 158 � 9.9 149 � 5.4
Efficiency, mmHg · ml�1 · g 205 � 34 198 � 13 207 � 17
LDH, OD/min 1.19 � 0.03 1.23 � 0.04 1.24 � 0.03

All values are given as mean � SEM. Baseline values for major parameters showed no significant differences among the three groups.

dP/dtmax � maximum value for the first derivative of left ventricular pressure; LDH � lactate dehydrogenase; LVdevP � left ventricular developed pressure
(� systolic pressure � diastolic pressure); OD � optical density.

Fig. 1. (A) Heart rate (mean � SEM) after reperfusion. (B) Left
ventricular developed pressure (LVdevP) after reperfusion
(mean � SEM). * Significantly different from control. � Signif-
icantly different from bupivacaine-treated group. One symbol, P
< 0.05; two symbols, P < 0.01; three symbols, P < 0.001.
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(P � 0.01) and 60 min (P � 0.001), whereas control
heart rates differed from the lidocaine treatment
group only at 60 min (P � 0.01). Heart rates did not
differ at any point between bupivacaine and lidocaine
treatment groups. Control values for LVdevP did not
differ from those of the lidocaine group at any point.
LVdevP differed in the bupivacaine-treated group from
control values at all time points after the hearts were
loaded to 10 mmHg diastolic pressure, 30 min (P �
0.05), 45 min (P � 0.001), and 60 min (P � 0.001).
LVdevP was statistically different in lidocaine and bu-
pivacaine groups at 60 min, where the bupivacaine
group exhibited greater contractility than the lido-
caine group (P � 0.01). The pattern was slightly
different in another measure of contractility, dP/dtmax,
where bupivacaine values were again greater than
controls, but only at 45 min (P � 0.01) and 60 min (P
� 0.001) (fig. 2A). Mean values of dP/dtmax for the
lidocaine group were between those of the controls
and bupivacaine groups but were not significantly
different from either at any time.

Figure 2B shows the plot of rate–pressure product for
the three groups over the time course of the experiment.
The bupivacaine- and lidocaine-treated groups showed
increased rate–pressure product through the duration of
the experiment. Differences in rate–pressure product
were found between bupivacaine and control at 30 min
(P � 0.05), 45 min (P � 0.001), and 60 min (P � 0.001).
Rate–pressure product of control and lidocaine groups
did not differ at any time point, whereas the two test
groups differed only at 60 min (P � 0.01).

Metabolism
Oxygen consumption was measured after reperfusion

(fig. 3A). Two-way ANOVA showed that, overall, treat-
ment had a significant effect in oxygen consumption
normalized to cardiac mass (P � 0.0002; F � 10.86).
However, after Bonferroni posttests, the only significant
differences among the three groups were at the first time
point. Fifteen minutes after reperfusion and just before
increasing LV volume, the control hearts demonstrated

Fig. 2. (A) Maximum positive first derivative of left ventricular
pressure (dP/dt; mean � SEM) after reperfusion. (B) Rate–pres-
sure product (RPP; mean � SEM) after reperfusion. * Signifi-
cantly different from control. � Significantly different from
bupivacaine-treated group. One symbol, P < 0.05; two symbols,
P < 0.01; three symbols, P < 0.001.

Fig. 3. (A) Oxygen consumption (mean � SEM) after reperfu-
sion. Oxygen consumption was not measured in control hearts
at the 60-min time point. (B) Efficiency (mean � SEM) after
reperfusion. * Significantly different from control. � Signifi-
cantly different from bupivacaine-treated group. One symbol,
P < 0.05; two symbols, P < 0.01; three symbols, P < 0.001.
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significantly higher rates of oxygen consumption nor-
malized to cardiac mass than both the bupivacaine (P �
0.05) and lidocaine (P � 0.01) groups. At 15 min, the
rates of oxygen consumption for the two treated groups
were not significantly different, and at later time points,
rates among the three groups were indistinguishable.
Coronary flow rates did not differ among the three
groups at any time point (data not shown).

The rate–pressure product can be normalized to the
simultaneous rate of oxygen consumption to give a mea-
sure of cardiac efficiency, roughly work performed per
volume of oxygen consumed per minute per gram of
tissue. This metric is shown for the three groups after
reperfusion in figure 3B. The greatest difference was
found for control versus bupivacaine at 45 min (P �
0.05); comparisons were not made at 60 min because
oxygen consumption was not measured in the control
group at this point. Values in the control and lidocaine
groups were not statistically different at any time, and
efficiency in the bupivacaine group exceeded that of the
lidocaine group only at 60 min (P � 0.05).

Cell Damage
Lactate dehydrogenase release was measured during

the 15 min before preservation and for 45 min after
reperfusion. Comparison by one-way ANOVA indicated
that mean enzyme activity released in the 15 min before
preservation (baseline) did not differ among the three
groups (1.22 � 0.07 OD/min; n � 15). LDH release for
the 45 min after reperfusion was compared for each
group with the mean baseline value (fig. 4). Treatment
had a significant effect on the overall pattern of LDH
release (P � 0.0001; F � 23.7). Bonferroni multiple
comparison posttest indicated that the LDH released in
the control group exceeded baseline values (P � 0.001).
LDH released by the bupivacaine group after reperfusion
was not statistically different from baseline values but

was significantly less than LDH released in the control
group (P � 0.001) after reperfusion. LDH release in the
lidocaine group after reperfusion was greater than base-
line values (P � 0.05) and significantly less than that in
the control group (P � 0.01) but not different from that
in the bupivacaine group.

Discussion

We found that isolated rat hearts preserved with a
solution containing bupivacaine exhibited improved
contractile function and reduced cell damage after pro-
longed cold storage. However, the benefit provided by
an equipotent concentration of lidocaine was signifi-
cantly less, suggesting a mechanism independent of so-
dium channel blockade. A salutary metabolic effect is
consistent with the observation that myocardial oxygen
consumption immediately after reperfusion was highest
in hearts of the control group (poorest recovery).

Use of local anesthetics in cardioplegia solutions has
been studied for more than three decades, but the pre-
cise mechanism of their benefit remains elusive.8,9 The
initial rationale was to arrest metabolism10 or “stabilize”
membranes, and early studies indicate a reduced inci-
dence of ventricular arrhythmias after cardioplegia con-
taining either lidocaine or procaine.11 Sodium channel
blockade alone confers a preservative advantage, and
tetrodotoxin, which induces polarized cardiac arrest,
preserves cardiac function after ischemia and reperfu-
sion.12 Chambers13 postulated that cardiac arrest with-
out loss of membrane potential reduces the harmful
ionic perturbations seen in depolarizing cardioplegia,
thereby decreasing the metabolic cost of correcting such
changes, particularly increases in intracellular sodium
and calcium content. He proposed the use of “hyperpo-
larizing” cardioplegia with adenosine, potassium chan-
nel openers, or local anesthetics over standard high-
potassium depolarizing solutions. Building on this work,
Dobson et al. 14,15 and Canyon et al.16 showed in isolated
rat hearts that arrest and perfusion with lidocaine plus
adenosine preserved cardiac function better than cardio-
plegia with a high-potassium solution. Corvera et al.17

recently showed in dogs undergoing cardiopulmonary
bypass that cardioplegia with warm or cold solutions of
lidocaine and adenosine were equally effective as cold
high-potassium solution in preventing myocardial injury.
We confirmed this effect in the lidocaine-treated hearts,
which exhibited less LDH release than controls; how-
ever, protection was limited to evidence of cell damage,
because lidocaine-treated hearts were no different from
controls in any parameter of contractility. The finding
that bupivacaine-treated hearts functioned better over
time than those preserved with an equipotent concen-
tration of lidocaine suggests that factors other than so-
dium channel blockade may be in play.

Fig. 4. Lactate dehydrogenase (LDH) release (mean � SEM) at
baseline and after reperfusion. OD � optical density. * Signifi-
cantly different from control. # Significantly different from
baseline. One symbol, P < 0.05; two symbols, P < 0.01; three
symbols, P < 0.001.
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Bupivacaine is a classic uncoupler of oxidative phos-
phorylation.18,19 Mitochondrial uncoupling is associated
with preconditioning, a possible mechanism for preserv-
ing function after prolonged ischemia.20,21 However,
this is not a likely explanation of our results because the
concentration of bupivacaine required to induce uncou-
pling is approximately twofold to fourfold greater than
those used in these experiments. Furthermore, we found
that the rates of oxygen consumption in bupivacaine-
treated hearts immediately after recovery were lower
than those of the control group, which is consistent with
reduced metabolism rather than the accelerated respira-
tion that is typical of uncoupled respiration. Reduced
oxygen consumption during the initial phase of reperfu-
sion might explain, in part, the improved function of
hearts treated with bupivacaine.

We previously observed that bupivacaine slows the
onset and progression of myocardial acidosis during an-
aerobic metabolism,7 a finding consistent with reduced
rates of adenosine triphosphate consumption. Bupiva-
caine also inhibits complex I of the electron transport
chain22,23 and suppresses fatty acid–dependent cardiac
respiration by inhibiting carnitine-acylcarnitine translo-
case, a key enzyme of mitochondrial fatty acid trans-
port.24 Fatty acid metabolism generates the preponder-
ance of cardiac adenosine triphosphate under normal
aerobic conditions but consumes considerable oxygen
in the process. Metabolic modulation, particularly inhi-
bition of fatty acid metabolism, is effective in treating
myocardial ischemia.25 This strategy might also conserve
tissue energy stores when the predominant mode of
adenosine triphosphate production presumably
switches to anaerobic glycolysis. Bupivacaine-induced
reductions in myocardial calcium transients and sensitiv-
ity26 should further reduce contraction-dependent oxy-
gen consumption.

Bupivacaine also possesses both antiinflammatory27

and antioxidant28 properties and protects against isch-
emic damage in different cells and experimental sys-
tems. For example, Lenfant et al.29 showed that bupiva-
caine reduces damage to erythrocytes after an oxidative
stress, and Niiyama et al.30 and Yamada et al.31 showed
that bupivacaine protects CA1 neurons from ischemic
damage.

Potential methods of reducing cell damage from isch-
emia and reperfusion injury include modulating metab-
olism to reduce oxygen consumption, improve scaveng-
ing and suppress the formation of highly reactive
species, and enhance cytoprotective cell-signaling path-
ways.32 Our findings are restricted in scope to a proof of
principle that adding bupivacaine to high-potassium car-
dioplegia improves myocardial preservation and provide
a limited view of possible mechanisms of cell protection.
Both cell death and oxygen consumption at the begin-
ning of recovery are reduced in hearts treated with
bupivacaine.

Bupivacaine use is not without potential problems. It
inhibits diverse ionotropic and metabotropic33,34 cell-
signaling pathways and potently suppresses both myo-
cardial conduction35–39 and contractility.38,40–42 Bupiva-
caine avidly binds the sodium channel for durations far
greater than lidocaine, a less toxic local anesthetic.37

This so-called “fast in–low out” binding could theoreti-
cally contravene its use in cardioplegia. Furthermore,
Freysz et al. has shown that both hypothermia43 and
ischemia44 increase myocardial sensitivity to bupiva-
caine toxicity. The same group also reported the obverse
effect, namely that bupivacaine decreases the threshold
to ischemia-induced ventricular fibrillation.45 These find-
ings suggest the possibility of additional problems with
using bupivacaine in hearts subjected to prolonged, cold
ischemia.

Summary
This study indicates a potential role for bupivacaine in

cardiac preservation during no-flow states such as found
during organ procurement and transport in advance of
transplantation. We hypothesize that the combined ef-
fects of polarized arrest, reduced calcium activation,
reduced tissue acidosis, and diminished oxygen con-
sumption may attenuate myocardial ischemic and reper-
fusion injury. Additional studies are required to deter-
mine whether the salutary effects of bupivacaine
reported here can translate to clinical applications
where cardiac preservation is needed.
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