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Flexible Interaction Model for Complex Interactions of
Multiple Anesthetics
Matthew Fidler, B.S., M.Stat.,* Steven E. Kern, Ph.D.†

Background: Minto et al. (ANESTHESIOLOGY 2000) described a
mathematical approach based on response surface methods for
characterizing drug–drug interactions between several intrave-
nous anesthetic drugs. To extend this effort, the authors devel-
oped a flexible interaction model based on the general Hill
dose–response relation that includes a set of parameters that
can be statistically assessed for interaction significance.

Methods: This new model was developed to identify pharma-
cologically meaningful interaction-related parameters and ad-
dress mathematical limitations in previous models. The flexible
interaction model and the model of Minto et al. were compared
in their assessment of additivity using simulated sample data
sets. The flexible interaction model was also compared with the
Minto model in describing drug interactions using data from
several other clinical studies of propofol, opioids, and benzo-
diazepines from Short et al. (ANESTHESIOLOGY 2002) and Kern et
al. (ANESTHESIOLOGY 2004).

Results: The flexible interaction model was able to accurately
classify an additive interaction based on the classic definition
proposed by Loewe, with at most an 8% difference between the
two surfaces. Also, the proposed model fit the clinical interac-
tion data as well or slightly better than that of Minto et al.

Conclusions: The new model can accurately classify additive
and synergistic drug interactions. It also can classify antagonis-
tic interactions with biologically rational surfaces. This has
been a problem for other interaction models in the past. The

statistically assessable interaction parameters provide a quanti-
tative manner to assess the interaction significance.

ANALGESICS and sedatives/hypnotics are combined to
produce anesthesia through drug interactions. This com-
bination of agents enables the anesthesiologist to create
an appropriate level of anesthesia with a fraction of the
amount of drug that would be necessary if either agent
were used alone. Many clinical therapies for cancer,
infections, and asthma, among others, intentionally use
drug combinations to produce clinically significant inter-
actions.1–10 To optimize dosing strategies for drug com-
binations, various quantitative approaches have been
developed. These methods fit into four general catego-
ries: isoboles, ray design, response surfaces, and purely
descriptive methods.11–19

Minto et al.15 developed a new method for modeling
interactions that combined the isobole, ray design, and
descriptive response surfaces. Differences in drug inter-
actions were fit to polynomial functions to describe the
Hill-based pharmacodynamic parameters for the interact-
ing agents. This approach was an extension of previous
models, such as that proposed by Greco et al., by de-
scribing the interaction through factors unrelated to po-
tency.10,20 The focus of their method was to capture the
underlying shape of the surfaces that emerged from the
clinical pharmacology data rather than to produce a
particular mathematical structure to represent interac-
tion models in general.

In a previous report from our group, we developed
interaction models for propofol and remifentanil for a
series of experiments in human volunteers using the
approach described by Greco. Although this approach
has less flexibility to map the response surface, it does
provide a unitary interaction parameter that allows com-
parison of the two-agent interaction over a range of
surrogate clinical effects. From this, we noted that the
relative level of interaction between these two agents
was less for sedation (indicated by Observer Assessment
of Alertness/Sedation score) than for blunting the re-
sponse to laryngoscopy. Although the Minto model cre-
ated surfaces that fit a variety of interaction data well,
comparison of the degree of interaction was focused on
visual qualitative methods rather than any quantitative
indicator.15

To retain the feature of an interaction parameter for
quantitative analysis, we developed a method referred to
as the flexible interaction (FI) approach, where each
interaction model parameter is linked to a specific phar-
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macodynamic interpretation. The summary parameter
can provide an immediate idea of the interaction curve
shape and properties so that in addition to assessing the
interaction surface shape, the clinician can determine
with some degree of statistical confidence the interac-
tion type, the maximum interaction point, and the inter-
action curve shape. We assessed the accuracy of this
model using the data from Short et al.21 that served as
the basis for the development of the Minto interaction
model. We also compared this new model with the
Minto interaction model in its ability to meet recom-
mended standards for defining interaction conditions
and to assess its corresponding advantages and disadvan-
tages.9,10,15

Materials and Methods

The FI model was developed considering traditional
pharmacologic definitions of drug interactions. After its
development, its capability to identify a known additive
interaction surface was assessed as an indicator of its
ability to accurately classify drug interactions. Classifica-
tion refers to whether the model can accurately deter-
mine the type of interaction that is present from com-
bining multiple drugs. This was compared with the
model of Minto et al.,15 which has been widely used in
the anesthesia literature to classify anesthetic drug inter-
actions. After this comparison, the FI model was used to
classify the interactions of the original data set from
Short et al.,22 which served as the basis for the develop-
ment of the Minto et al.15 model. In addition, the FI
model was fit to the data set of Kern et al., which
allowed assessment of interactions that were asymmetric
and with profound synergism.10,20 Comparisons be-
tween the FI model fit and the Minto et al. model are
made both qualitatively and statistically.15

Model Development
Both Loewe and Berenbaum developed a condition for

noninteracting drugs, called an additive interaction.9,10

For two drugs acting in a sigmoid pharmacodynamics
manner as described by the Hill equation, this condition
becomes

1 �
�A�

� E � E0

EA,max � E�
1
�A

A50

�
�B�

� E � E0

EB,max � E�
1
�B

B50

. (1)

Here, [X], EX,max, �X, and X50 represent the concentra-
tion, maximum effect, slope of the Hill function, and
concentration where 50% of each drug’s effect occurs
when acting alone, respectively. E0 represents the base-
line effect when no drug is present.

The denominators of equation 1 represent the concen-
tration of drugs A and B that give effect E when acting

alone. These concentrations are often called the isoef-
fective concentrations. In an additive combination, the
two drugs that are administered cause the same effect as
the potency equivalent amount of a single drug admin-
istered alone. When plotting the concentration of one
drug against another for a given level of effect, drug
combinations that produce a line that intersects the
isoeffective concentrations of each individual agent at
the axes define additivity mathematically.

By plotting the combinations producing a set effect,
isobolographs easily visualize the interactions. An alter-
native method visualizes the complete range of effects
produced by the combination. This creates a response
surface that classifies the entire range of effects by a
three-dimensional plot. Additivity for a response surface
may be harder to visualize than with an isobole. An
additive response surface assumes that there is a linear
relation between all effects. Each set effect defines an
isobole in a response surface, as graphically illustrated in
Minto et al.15

While equation 1 defines additivity for drug combina-
tions, deviations from it can be used to classify an inter-
action as either synergistic or antagonistic. When an
interaction is synergistic, it takes less drug in combina-
tion to produce the same effect than if only one drug is
used. Graphically, the combinations of drugs producing
an effect are closer to the origin/effect axis than the
line/surface of additivity, and the left-hand side of equa-
tion 1 is less than 1. Conversely, when an interaction is
antagonistic, it takes more drugs in combination to pro-
duce the same effect. Interaction concentrations that
produce an antagonistic effect are farther from the ori-
gin/effect axis than the line/surface of additivity, and the
left-hand side of equation 1 is greater than 1.

Minto et al.15 proposed a model that can be written as
follows:

U50 ��p� �
1

� E � E0

Emax ��p� � E�
1

���p�
��A�

A50
�

�B�
B50

�,

�p �
�A � ⁄A50

�B � ⁄ B50 � � A � ⁄ A50
.

U50, Emax, and � were defined by polynomial functions
for simplicity in their approach. U50 represents the num-
ber of normalized potency units associated with 50% of
maximum effect. All other terms have the same meaning
as in the standard Hill dose–effect relation. The polyno-
mial terms are abbreviated by ui, gi, and zi for U50, Emax,
and �, respectively, where i represents the order of the
polynomial by which the number is multiplied (u2 is the
constant in front of �2). If the polynomial is a quadratic
function, the interaction can be statistically tested based
on the polynomial parameter values alone. For higher
order polynomials, the parameters alone cannot be sta-
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tistically assessed to determine the interaction type.
Hence, the ability to fit data (goodness of fit) or the
strength of the interaction statement (statistical power)
is sacrificed when classifying interactions that can fit
higher order polynomials with the Minto model. For this
reason, we were motivated to make a model that has
statistically testable parameters for flexible interactions.

The FI model assumes each drug behaves in a Hill
manner like the Minto model, allowing classification of
interactions between drugs that have different maximum
effects and different Hill slopes. When the maximum
effects for the two drugs are different, the surface can
still assess the interaction impact through changes in the
50% effect (EC50), which is a composite indicator of the
combination potency. For example, in the case of a
partial agonist where one drug has a lower maximum
effect than another, decreases in EC50 indicate a benefi-
cial interaction, requiring less of the drugs in combina-
tion to produce the same effect as either drug alone.

Another benefit of using the Hill model is that changes
in Hill slope can be predicted. Traditionally, interaction
modeling assumed the Hill slopes were fixed for inter-
actions. When observing the behavior of the drugs act-
ing alone, each drug has Hill slope values that are usually
different from one another. Therefore, it is reasonable to
assume that Hill slopes can also be different in interac-
tions.

By considering these advantages, the FI model main-
tains Minto’s assumption, while relating directly to the
previous Finney model.10 This gives a general form of

1 �
1

� E � E0

Emax ��p� � E�
1

���p�
��A�

A50
�

�B�
B50

� � · f · 	�A � �B�
A50B50

� . (2)

The � term indicates the type of interaction. Positive
values show synergism; negative values show antago-
nism. Classically, this interaction type is based on the
assumptions of fixed maximum effect, and Hill slope.
When the Hill slopes are different, both Minto and FI
models deviate from the classic additive interaction sur-
face as given by Loewe. Still, by assuming a simple linear
change in the Hill slope as a function of drug fraction,
predicted differences between a Loewe interaction sur-
face and the complex Minto or FI interaction models are
typically less than experimental error and therefore can
be considered negligible (as shown later and displayed in
fig. 1).

Further, the FI model contains a square root term
inside the bracket (equation 2) for the interaction term.
This structure was chosen for two reasons. First, it as-
sures each drug fraction behaves as a new Hill-based
drug, as assumed by Minto et al.15 This ensures that the

square root allows a single solution for all isoboles,
particularly those that are antagonistic. If, instead, the
product alone were used, the model would have prob-
lems with antagonism. In this situation, when adminis-
tering two drugs in an antagonistic combination, as in
the single-constant Hill approach, the effect will in-
crease, and then decrease with the addition of more
drugs in combination. The last reason for the square root
is for continuity between other models. When f � 1, and
both Hill slope and maximum effect are constant, the
model will be identical to the model proposed by
Finney, allowing direct comparison between the two.
Also, the Finney model has a mathematical relation be-
tween the interaction indexes of the single Hill constant
model, as given in Greco et al.10 Therefore, the extent of
interaction can be compared directly between all three
models (the extent of interaction for the FI model is
equivalent to Finney’s interaction index).

The disadvantage to the square root term, as discussed
by Greco et al.10 with the approach of Finney, was that
it allowed the interaction surface to “fall out of the
potency normalized unit square.” Still, there are more
benefits than drawbacks to the square root term, espe-
cially if the model is able overcome this normalized unit
square problem. The key is in choosing the function f.
The term f defines changes in an isobole of the response
surface for a given level of drug effect. For the FI model,
setting f to a functional form inspired by the � probabil-
ity distribution gives

Fig. 1. The difference between either the Minto or the proposed
flexible interaction (FI) model and the additive interaction sur-
face as defined by Loewe. The FI model and the Minto model,
which have the same additive interaction surface, are similar to
the traditional the Loewe additive state. The scaled model dif-
ference is the sum of squared difference divided by the number
of points sampled between the two “additive” surfaces.
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f�m, w, �p� � ��p

m�w �1 � �p

1 � m�w

exp �� w��p � m

m
�

m � �p

1 � m � � . (3)

In this function, m is the symmetry parameter of the
potency fraction, �p, where the maximum interaction
occurs. When m � ½, the interaction is symmetric. The
w parameter allows the isobole to fit to multiple shapes.
If the isobole shape parameter w is set to 1, the normal-
ized unit square problem is overcome. Similarly, the
parameters � and Emax are given as a function of potency
fraction. Starting with a simple estimate for � and Emax

that is a linear function of the potency fraction, these
parameters are given by the equations

���p� � ��A�p � �B�1 � �p� �

· �1 � �f�m�, w�, �p��

Emax��p� � �Emax,A�p � Emax,B�1 � �p��

· �1 � �f�m�, w�, �p� � . (4)

The � and � parameters impact the type of change in
� and Emax, respectively. Positive values of � and �
indicate an increase in Hill slope/maximum effect, neg-
ative indicates a decrease, and 0 represents no change
from the line. Both � and � are restricted to be greater
than �1 to keep the respective functions positive. This
condition ensures there are no negative Hill slopes or
negative effects when the drug acting alone has a posi-
tive effect. The m� and m� parameters indicate the sym-
metry of the respective parameter change; the w� and
w� parameters, which are greater than 0, represent how
much a section of the curve has appreciable visibility
around its location of maximum change, m� or m�.
These parameters are included to allow flexibility in
modeling.

Regression Procedure
Because interaction models generally have a large num-

ber of parameters, it is possible that every parameter
described in the model may not be significant in deter-
mining the optimal fit. Therefore, an algorithmic step-up
approach was used during regression. Selecting the best
model for a given set of data can be done in three ways:
(1) using P values to determine whether a parameter is
significant, (2) a goodness of fit metric such as Akaike
Information Criterion (AIC, measuring of how likely the
model is given the data), and (3) using the F test based
on the residuals to determine whether another parame-
ter adds a significant descriptor to the interaction.23 The
P value method assumes each model is “true” when
calculating the values assessing significance of parame-
ters. The F test requires a different number of parameters
to compare (which may not be true for different FI

models). Therefore, we used the AIC method of select-
ing a model. Smaller AIC values indicate better models.
The AIC numbers have been shown in simulation to be
the expected log likelihood that the data are produced
by the model.23 These numbers not only have the ad-
vantage that they are model independent, allowing two
different models to be compared, but they function as a
comparable measure of goodness of fit.

The ratio for the most synergistic/antagonistic drug
combination in the interaction will be assumed to occur
at equal potency ratios of drugs A and B. This occurs
when the interaction surface is symmetric. This assump-
tion is extended to the maximum effect and Hill slope
parameter functions also. Parametrically, this is trans-
lated as m � m� � m� � 0.5, or when the potency
fraction of the interacting compounds is 0.5. Unless the
model-building procedure determines otherwise, a mod-
erate value of isobole shape is assumed, w � 1. This
allows the isobole/response surface to produce a gradual
change to the maximum interaction. This assumption is
extended to the Hill slope and maximum effect changes;
thus, w � w� � w� � 1. The procedure also assumes no
interaction as the null hypothesis unless the model-build-
ing procedure shows otherwise. Parametrically, this
translates to � � � � � � 0. This approach was followed
for both the FI and Minto models fit to the data.

Additive Surface Determination
The FI model and Minto model can test for interactions

as defined by Loewe that are synergistic, antagonistic,
and additive when Emax and � are constant for all drug
combinations being fit. To show this, Loewe additive
surfaces (equation 1) with a constant Emax (�p) of 1 and
minimum effect value of 0 were generated. The data
generated were compared with the “additive” state for
both the FI and Minto models, i.e., constant maximum
effect and the Hill slope change between the two inter-
acting drugs modeled by a linear function.

Because the linear function between the Hill slope
values for the simulated interaction surface does not
force additivity everywhere (as in required in Loewe’s
definition) but only at the EC50, differences in Hill slopes
are likely to show deviations from the Loewe additive
interaction surface at isoboles other than that for the
50% effect. Therefore, we tested a variety of different
Hill constant combinations, which were varied from 0.1
to 15 by 0.1 increments.

We also evaluated whether changes in EC50 values
would impact the ability of the two models to adequately
classify the additive interaction surface. We simulated
two surfaces where A50 and B50 were different and a
surface where A50 and B50 were equal. The set of test
surfaces was produced at A50 � B50 � 7.5, A50 � 3.75;
B50 � 11.25, and A50 � 1.875; B50 � 13.125.

These test surfaces were created by a C�� program
that generated the surface for Loewe additivity.24 With
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these test surfaces, the points generated were compared
with both models’ additive surfaces using the square
difference between either model’s additive surface and
the Loewe generated surface. From this, we can calcu-
late the difference between the “additive” interaction
state that either model generates and the classic Loewe
additive interaction state.

Validation with Data Sets
Minto et al. originally applied their model to a data set

collected by Short et al.15,22 This data set contained
response data from 400 women undergoing elective
gynecologic surgery who received combinations of
propofol, alfentanil, and midazolam. Response to verbal
command (opening eyes) was assessed at the time when
the peak concentrations for the administered agents
were estimated to occur (propofol and alfentanil at 2
min, and midazolam at 4 min).

The same data set was used to compare the proposed
model and the Minto model using the AIC parameter.
This was conducted for two-drug and three-drug inter-
action conditions. (Additional information regarding this
is available on the ANESTHESIOLOGY Web site at http://
www.anesthesiology.org.) The interaction type and Hill
slope change were allowed to vary in the FI model. The
Minto model was fit using a quadratic interaction rela-
tion for the potency and Hill slope values.

This comparison does not allow a full assessment of
the capabilities of either model. Therefore, in addition to
comparing the data from Short’s study, we compared the
data from the study of Kern et al.20 Briefly, 12 male and
12 female subjects were studied using computer-con-
trolled infusions of propofol and remifentanil to create
an increasing staircase drug-concentration profile in
each subject. The interactions were assessed with the
drug alone and in combination. The following surrogate
measures were used to determine effect: Observer As-
sessment of Alertness/Sedation score to determine seda-
tion (1–3, not sedated; 4–5, sedated), pressure algome-
try on the subject’s tibia, electrical tetanic stimulus at the
posterior tibial nerve, and response to laryngoscopy.

These measures were assessed at various drug fractions
and were then normalized to a response based on the
patient and pooled. The two models were fit to this data
for a more complete comparison of each model’s prop-
erties.

Statistics
Unless otherwise specified, all statistical procedures

and graphics were performed/generated using R.25

When comparing two models with a different number of
parameters, the F test is used as suggested in Boomer
(College of Pharmacy, Oklahoma University, Norman,
OK).‡

Results

The difference between the Loewe additive interaction
surface and the surfaces generated by the FI or Minto
model with the Hill slope parameter defined by a linear
relation was minimal. Changes in A50 and B50 did not
affect the differences between the additive state esti-
mates. Changes in the parameters �A and �B caused
overall squared difference between the additive surface
based on Loewe and the other models that ranged from
1% to 8%. This difference is likely to be inconsequential
when compared with inherent biologic variability that
exists in data used to create response surfaces.

Comparing Goodness of Fit through AIC
The AIC values were essentially identical, implying

that both models fit the data from Short et al. equally
well for the interaction of midazolam or alfentanil with
propofol.21 The maximum difference in AIC was 0.02, as
shown in table 1. The greatest difference in the AIC
between the models for two-drug interaction models
was 1.29 for the combination of alfentanil and midazo-
lam. Although this difference is larger, it is not signifi-
cantly different (P value � 0.4887). Therefore, likeli-
hood estimates of either models are the same, indicating
that both describe the data equally well. It was noted
that the Hill slope decreased for the drugs in combina-
tion, which would not have been determined using the‡ http://www.boomer.org. Accessed February 27, 2006.

Table 1. Checking Model Assumptions

Minto STP

Drug 1 Drug 2 AIC Shapiro Mean P AIC Shapiro Mean P

Propofol Midazolam �58.96 (6) 0.3316 0.2329 �58.97 (6) 0.3241 0.2355
Propofol Alfentanil �36.33 (6) 0.5739 0.3611 �36.30 (6) 0.05827 0.3595
Alfentanil Midazolam �33.80 (5) 0.6344 0.815 �35.09 (4) 0.2635 0.822
All three drugs �106.75 (10) 0.1336 0.6228 �109.06 (9) 0.115 0.6173

Comparison of Akaike Information Criterion (AIC) values for the Minto and proposed models. All values are model independent and assume a normal error
structure. The number in parentheses represents the number of parameters used on the final model. Also compared are the P values for the Shapiro test of
normality (normality is a decent assumption in all cases). The last values compared are the P values for the test ensuring the mean of the residuals is zero. This
assumption is also held.
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traditional parametric models described by Greco. Dif-
ferent Hill slopes occurred for every two-drug interac-
tion model except the FI between alfentanil and mida-
zolam. The parameter values are summarized in table 2.

For the three-drug interaction data, the FI model
showed an improved AIC over the three-agent Minto
model (P value � 0.001; AIC difference 2.31). The AIC
measures the unbiased expected log likelihood but does
not have a specific distribution. By convention, an AIC
difference of 0–2 is considered weak evidence for the
smaller AIC model, 2–6 is considered positive evidence,
7–10 is considered strong evidence, and greater than 10
is considered very strong evidence.26 Therefore, the
three-agent interaction model comparison of the Minto
and FI models has positive evidence for the three-agent
FI model. This difference is because the FI model de-
scribes the data with approximately the same variance,
with one less parameter.

For the Kern et al.20 data set, the FI model fits the
pressure algometry, and tetanic stimuli measurements
are significantly better than the corresponding Minto
model (AIC difference of at least 3.24 for algometry,
13.27 for tetanic stimulus; F test; P value � 0.001). Both
the models fit pressure algometry and tetanic stimulus
better than the approach taken in the original article,
which used Greco’s method with a single Hill coeffi-
cient, with a minimum AIC difference of 115.00. In the
case of sedation, the Minto model fit is better than the FI
model, with an AIC difference of 10.08; for laryngos-
copy, the FI model is better than the Minto model, with
a difference of 81.49. These results are summarized in
table 3.

Checking Model Assumptions
Other than goodness of fit, a model is appropriate for

describing data when the error of the model is random

and ideally small. Technically, the residuals are indepen-
dent normal random variables with a fixed variance. This
is often verified graphically and through statistical tests.

In all residual plots for Minto’s two-drug model, the
assumption of constant variance holds. Even at the larger
“concentrations” where there are fewer data points, the
data show as much variance as the points in the lower
concentrations. This holds for the two-drug FI models as
well. The models do not show significant deviation from
the normality (as determined by the Shapiro-Wilk test),
residual correlation (as determined by the Durbin-
Waston test), or bias (as determined by the t test). The
statistical tests are summarized in table 1.

The residuals for the two drug interactions are almost
superimposable, validating the result that the AIC values
stated—the two drug models are approximately equiva-
lent for these data sets. The FI three-drug model and
Minto three-drug model show differences in predicting
the data, as shown by the AIC difference. This implies
that the FI model better predicts the data than the Minto
model. Examples of these fits are displayed in figures
2–5.

Practical Considerations
Both models have the same sort of descriptive proper-

ties. They produce similar-looking surfaces with differ-
ent abilities to classify interactions. With the FI model, a
direct transformation of the � parameter expresses the
percentage increase/decrease of the 50% effect when
compared with each drug in the combination acting
independently. This is a unique feature of this model
when compared with spline or polynomial approaches.
For example, the interaction of alfentanil and midazolam
requires 55% of the additive drug combination to pro-
duce the same effect at the most effective ratio; alfen-
tanil and propofol takes 80%; and midazolam and propo-

Table 2. Interaction Parameter Summary for Short et al.21 Data Set

M3 FI3 MAM FIAM MAP FIAP MMP FIMP

A50 0.093 (0.003) 0.093 (0.003) 0.093 (0.003) 0.093 (0.003) 0.093 (0.003) 0.093 (0.003) — —
�A 5.276 (0.474) 5.257 (0.460) 5.643 (0.910) 5.233 (0.532) 5.686 (1.057) 5.687 (1.058) — —
M50 0.145 (0.004) 0.145 (0.004) 0.144 (0.004) 0.145 (0.004) — — 0.144 (0.003) 0.144 (0.003)
�M � �A � �A 4.795 (0.748) � �A — — 4.829 (0.567) 4.830 (0.567)
P50 1.076 (0.024) 1.075 — — 1.075 (0.029) 1.075 (0.029) 1.075 (0.020) 1.075 (0.020)
�P 10.633 (2.117) 11.157 (2.306) — — 11.167 (2.889) 11.146 (2.881) 11.162 (1.969) 11.143 (1.962)
IAM 1.804 (0.082) 1.613 (0.123) 1.807 (0.095) 1.643 (0.153) — — — —
IAP 0.804 (0.118) 0.491 (0.088) — — 0.808 (0.141) 0.507 (0.111) — —
IMP 1.660 (0.086) 1.391 (0.116) — — — — 1.651 (0.077) 1.406 (0.109)
IAMP 1.390 (0.732) — — — — — — —
HAM — — — — — — — —
HAP 12.955 (4.404) �0.447 (0.093) — — 14.103 (6.734) �0.427 (0.142) — —
HMP � HAP � HAP — — — — 15.153 (4.530) �0.478 (0.093)

Parameter values and SEs (in parentheses) of the models for Short et al.21 data set. Notice how invariant the parameter values are between the three-agent model
and two-drug model. The subscripts denote which drugs each model uses: A for alfentanil M for midazolam, and P for propofol. The top line denotes the Minto
model by M and the proposed model by STP. The Hill parameters’ meanings are discussed briefly in the text. The I term represents the interaction. For the flexible
interaction (FI) model, I represents the �interaction parameter; for the Minto model, the quadratic U50 parameter u2. The H term represents a change in Hill slope.
For the FI model, H is the � Hill slope change; for the Minto model, the quadratic change in Hill slope. Higher orders of the Minto model, and the w/m parameters
of the FI model, are not significant in describing the Short et al. data set.
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fol takes 59%. These results imply the interaction is
synergistic. For the Kern et al.20 data set, the pressure
algometry response takes 43% of the additive concentra-

tion at its maximum interaction location, tetanic stimu-
lus takes 40%, sedation takes 58%, and laryngoscopy
takes 40%.

Another interesting feature is that the FI model can
predict the best ratio of drug for synergistic effect. For

Table 3. Comparison between SHC, Minto, and FI Model Fits to Kern et al.20 Data Set

FI Model Minto

Alg. Tet. Sed. Lar. Alg. Tet. Sed. Lar.

P50 2.82 (0.16) 5.10 (0.24) 1.81 (0.12) 7.45 (0.38) 3.07 (0.28) 4.78 (0.22) 1.89 (0.10) 6.19 (0.40)
�P 1.04 (0.11) 3.57 (0.32) 4.38 (0.40) 4.00 (0.59) 1.10 (0.13) 3.20 (0.29) 5.17 (0.70) 2.51 (0.36)
R50 6.25 (0.70) 20.53 (1.73) 12.25 (0.57) 67.31 (5.19) 5.48 (0.64) 18.73 (1.55) 12.24 (0.61) 55.63 (2.65)
�R � �P 1.22 (0.142) � �P � �P � �P 1.19 (0.14) 3.71 (0.60) 7.48 (1.75)
�/u2 2.63 (0.68) 3.55 (0.33) 1.46 (0.20) 6.42 (0.56) 5.90 (1.93) 16.25 (4.54) 20.86 (8.03) 8.26 (4.48)
m/u3 — 0.82 (0.05) — 0.94 (0.03) �2.64 (1.27) �24.21 (6.50) �29.75 (10.79) �13.90 (6.37)
w/u4 3.67 (1.26) 0.82 (0.05) 0.14 (0.20) 0.11 (0.07) — — 14.48 (4.72) 8.43 (2.93)
�/g2 5.66 (1.92) — — — 54.08 (8.87) — — —
m�/g3 0.90 (0.02) — — — �40.48 (6.64) — — —
w�/g4 — — — — — — — —
AIC 192.94 �77.54 73.35 100.75 196.18 �63.27 68.10 182.24
SD 0.2859 0.2212 0.2552 0.2608 0.2873 0.2247 0.2533 0.2800
AICSHC 312.79 227.59 206.34 297.68 312.79 227.59 206.34 297.68
SDSHC 0.3575 0.2796 0.2551 0.3000 0.3575 0.2796 0.2551 0.3000

Remifentanil and propofol Akaike Information Criterion (AIC) and parameter values for Kern et al. data set.20 Compares the fit for pressure algometry (Alg.), tetanic
stimulus (Tet.), and laryngoscopy (Lar.) for STP and Minto models. Additionally, the AIC and SD (residuals) of both models are compared, along with the single
Hill constant (SHC) model proposed in the original article. The AICSHC and SDSHC show the corresponding values for the original model proposed in the Kern
et al. article. The u constants represent the U50 polynomial for the Minto et al. model; g constants, Hill slope polynomial. The subscript denotes the order of the
polynomial each constant is multiplied before. All other constants’ meanings are discussed in the article.

FI � flexible interaction.

Fig. 2. The response surface fit of the interaction data from Short
et al.21 for alfentanil and propofol using the Minto model and
residual plots. Top left is the response surface, with points plotted
as black triangles if they are more than 2 SDs away from the
surface, gray filled circles if they are more than 1 SD away, and
circles if they are within 1 SD of the surface prediction. The top
right shows the surface contour. The bottom shows the standard-
ized residuals.

Fig. 3. The flexible interaction (FI) model fit of the interaction data
from Short et al.21 for alfentanil and propofol. The plots are the
same as described in figure 2. For this data set, the FI model
prediction is similar to that in figure 2 from the Minto data.
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the asymmetric case, the ratio that gives the best pres-
sure algometry effect of propofol to remifentanil is
0.452, i.e., a combination with the opioid at almost twice
the equipotent amount as the hypnotic is the most ef-

fective combination. For laryngoscopy, the ratio is 1.645,
implying that the combination with greater hypnotic is
the best. For the other surrogate effects used in the
study, the best ratio of effect of propofol to remifentanil
is P50/R50.

Both models have an interesting property that is ob-
servable in the contours of the alfentanil and propofol
interaction. The synergisms for the lower levels of the
population response are greater than the higher levels of
population response. Therefore, when administering
propofol and alfentanil, the population that responds
earlier is more sensitive to the interaction than interac-
tions that occur later. Although this is a biologically
reasonable result, it is something that could not be
shown without a decrease in Hill slope. This same sort of
property is exhibited to a greater or lesser degree when-
ever the Hill slope changes are significant and negative.
When the Hill slope change is positive, the higher pop-
ulation is more sensitive to the interaction than the
lower population. This is shown in figures 2 and 3.

Most of the surfaces seemed to generally predict the
same sort of response in the Kern et al. data set except
for the algometry response.20 The Minto model predicts
a decrease in Hill slope, whereas the FI does not. Both
may be reasonable. The difference between the fits is
shown in figures 4 and 5.

Discussion

The new FI model presented is able to fit data from the
clinical experiment done by Short et al.21 as well as the
model proposed by Minto et al.15 for two agent interac-

Fig. 4. The flexible interaction (FI) fit of the remifentanil and
propofol interaction effect on algometry from the study of Kern
et al.20 The individual plots are the same as described in figure
2. The interaction shows significant synergism, and the model
provides a good fit to the data as indicated by the surface and
diagnostic plots.

Fig. 5. The Minto model fit of the same
data from Kern et al.20 shown in figure 4.
The interaction surface difference is due
to the decrease in Hill slope predicted by
the model. The diagnostic plots indicate
that the fit to the data is good even
though the surface is irregular. This ex-
ample highlights that even when the
model fits the data well, the surface must
be examined for suitability to describe
the interaction.
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tions, and better for three interactions, while preserving
the statistically testable parameter structure that allows
for easy classification of the interaction type. When fit-
ting the data set from Kern et al., the fit was usually
better while also preserving the parameter structure.20

Although the necessity of this classification ability has
been argued, we believe that from a clinical perspective,
the classification provides the most useful reason for
creating these surfaces.

Characterizing the surface description with a model
describes what is happening biologically, whereas clas-
sifying what is happening with a structural model pro-
vides the ability to both adequately describing the model
and test statements about the surface that are important
to the understanding of interactions. The FI model goes
further than many of the simple parameter-based inter-
action models by allowing multiple statements about the
interactions to be made through testing the parameters
themselves. The parameters allow assessment of
whether some combination of drugs will produce a
synergistic or only an additive effect. These parameters
not only allow quantification the interaction type, but
also allow some relative indicator of the magnitude of
that interaction. In addition, the drug ratio that shows
the most effective point in the interaction compared
with either drug acting alone can be described by pa-
rameters.

The difference in fit between the FI and Minto models
for the Kern et al.20 data set could be because of the
strange shape of Minto’s synergistic isoboles. This
isobole problem can be overcome by changing Minto’s
U50 � 1/V50, where V50 is a fourth-order polynomial
under the same constraints as U50. Using this model
gives consistently better results than the original Minto
model for the Kern data set, as shown by the AIC num-
bers: laryngoscopy, 128.11; sedation, 65.92; algometry,
195.17; and tetanic stimulus, �74.87. Still, the FI model
fits the fits the data better than the transformed Minto
model, with the only exception being sedation. There-
fore, part of the problem is inherent in the polynomials’
descriptive power, which is discussed later.

FI Parameter Meanings
Intensity/Type Parameters. The most obvious pa-

rameters with meaning are �, �, and �. These determine
the type and intensity of change of their respective
functions as a result of the interaction. The � parameter
determines the change in U50/EC50. Positive � values
indicate decreases in U50/EC50 from the additive state,
indicating synergy. Therefore, when � is positive, less
drug in combination is required than if the drugs were
the same. Negative values indicate increases in U50/EC50

from the additive state, or antagonism. The � parameter
also indicates the relative amount of increase/decrease in
interaction.

The � parameter represents the increase (positive) or

decrease (negative) in Hill slope. Like the � parameter,
there is a direct relation between the percent increase/
decrease in Hill slope from the line between the Hill
slopes of the drugs: p � 1 � �. Hence, a � of �0.5
represents that only 95% of the line value at the maxi-
mum Hill slope change is observed, or a decrease in Hill
slope. Because a negative percent increase in Hill slope
and negative Hill slopes do not make sense, � must be
greater than �1. This � parameter changes the isobole
shape, or degree of isobole bowing, above and below
the 50% effect. This was considered to be a disadvantage
of Finney’s model in Greco et al.,10 but is an advantage
here because it allows different types of bowing to
occur, not just the bowing defined by Finney’s original
model.

The � parameter represents increase/decrease of Hill
slope in relation to the maximum effect line. Like the
rest of the parameters, an increase is denoted by a
positive value and a decrease is denoted by a negative
value. The � parameter is also directly related to the
percent increase/decrease of the maximum effect line: p
� 1 � �, where p represents the percent change from
the line. Therefore, the � parameter represents the per-
cent change in maximum effect in the same was as the �
parameter.

Symmetry/Ratio Parameters. The symmetry/ratio
parameters determine the point of maximum interaction
for each drug combination. The m value indicates the
potency fraction where the isobole deviation from the
additive curve is the greatest, which is indicative of the
most effective potency ratio for the interaction. The
other symmetry parameters have similar meanings. The
potency fraction where the maximum change in Hill
slope and maximum effect occur is denoted by m� and
m�.

The possibility of an asymmetric response surface was
shown by Dahan et al.27 and Niewenhuijs et al.28 when
modeling the interaction of alfentanil with sevoflurane
and also remifentanil with propofol. Dahan’s group used
a spline model with a symmetry parameter to describe
the data. They also used a different underlying pharma-
codynamic model instead of the Hill model described in
this article. For this reason, this model cannot be directly
compared with their data set without modifying the
underlying pharmacodynamic interaction model. Still,
when modeling the data from Kern et al.,20 there are
changes in both symmetry and how the interaction
changes from the maximum interaction drug ratio to the
drug acting alone in comparison with the original model.
The FI model structure handled these challenges well.

Interaction Scope Parameters. The w parameter
indicates the uniformity of the interaction across various
drug ratios. For a large w value, the interaction does not
occur as quickly as the more uniform interaction when
w � 1. For example, with a w value of 10, the interac-
tion occurs only over the potency fraction 0.2–0.8.
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Therefore, with larger values of w, a narrower region
interacts. Conversely, with w values less than 1, the
interaction occurs more quickly. For example, values
less than ½ indicate an almost immediate interaction.
These same sorts of descriptive properties are applied to
the changes in Hill slope with w� and maximum effect
with w�.

Novel Ways FI Model Describes Interactions
This new model has some unique properties. First, it

overcomes problems that previous interaction models
had with antagonistic interaction surfaces while still
maintaining interaction descriptive properties
through parameters. The FI model also allows interac-
tions to be asymmetric and have a different maximally
efficient drug ratio than A50/B50 (first suggested
through splines in Dahan et al.).27 The last is the new
interaction range described by the w parameter. This
provides a description of how the interaction changes
from maximum interaction to no interaction. It also
allows a flexibility not achieved by the statistically
testable models in the past.

With the exception of multiple interactions on the
same effect slice, the FI model describes the same sorts
of interactions as the Minto model: additive interactions,
synergistic interactions, antagonistic interactions, partial
agonistic interactions, competitive antagonist interac-
tions, and inverse agonist interactions. In fact, the pa-
rameters can more concisely describe certain types of
interactions. An example of an asymmetric interaction
that is better described by fewer parameters in the FI

model is given in figure 6. Both the Minto and related
nonconstrained spline methods would take more param-
eters to describe these sorts of surfaces. This is a possible
reason why the FI model fit the Kern et al. 20 data set
better with the strongly asymmetric surfaces predicted
in tetanic stimulus and laryngoscopy, the two models
with the highest difference in AICs between the Minto
and FI models. Overall, the FI model fit the clinical
interaction study data slightly better than the Minto
model while allowing statistically testable parameters for
curve shape properties. We believe this adds signifi-
cantly to the ability to generate interaction surfaces as a
means for evaluating interactions in a statistical, quanti-
fiable manner.
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