
� ECONOMICS
Anesthesiology 2005; 103:1259–67 © 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Bayesian Prediction Bounds and Comparisons of
Operating Room Times Even for Procedures with Few or
No Historic Data
Franklin Dexter, M.D., Ph.D.,* Johannes Ledolter, Ph.D.†

Background: Lower prediction bounds (e.g., for fasting), up-
per prediction bounds (e.g., to schedule delays between sequen-
tial surgeons), comparisons of operating room (OR) times (e.g.,
when sequencing cases among ORs), and quantification of case
uncertainty (e.g., for sequencing a surgeon’s list of cases) can be
done accurately for combinations of surgeon and scheduled
procedure(s) by using historic OR times. The authors propose
that when there are few or no historic data, the predictive
distribution of the OR time of a future case be centered at the
scheduled OR time, and its proportional uncertainty be based
on that of other surgeons and procedures. When there are a
moderate or large number of historic data, the historic data
alone are used in the prediction. When there are a small num-
ber of historic data, a weighted combination is used.

Methods: This Bayesian method was tested with all 65,661
cases from a hospital.

Results: Bayesian prediction bounds were accurate to within
2% (e.g., the 5% lower bounds exceeded 4.9% of the actual OR
times). The predicted probability of one case taking longer than
another was estimated to within 0.7%. When sequencing a sur-
geon’s list of cases to reduce patient waiting past scheduled start
times, both the scheduled OR time and the variability in historic
OR times should be used together when assessing which cases
should be done first.

Conclusions: The authors validated a practical way to calcu-
late prediction bounds and compare the OR times of all cases,
even those with few or no historic data for the surgeon and the
scheduled procedure(s).

OPERATING room (OR) operational decisions on the day
before and on the day of surgery rely on the uncertainty
in the estimates of OR times, particularly those decisions
that affect patient and surgeon waiting times.1

For example, the decision as to when a patient should
stop drinking and be ready on the day of surgery relies
on the shortest expected time(s) for the preceding
case(s) in the patient’s OR.1,2 A lower prediction bound for
the OR time of a case is the value that will be exceeded by
the next randomly selected case of the same type at the

specified rate. There is a 5% chance that the OR time of a
case will be briefer than its 5% lower prediction bound.1,2

For example, suppose that two surgeons are scheduled
in the same OR on the same day, and the OR workday is not
filled. To reduce the expected tardiness of the start of the
second surgeon, a delay can be scheduled between
the cases, thereby reducing the expected waiting time of
the second surgeon if the first surgeon were to finish late.
An appropriate delay relies on the longest time the cases are
likely to take (e.g., their 90% upper prediction bounds).1,3

For example, a surgeon is doing the first case of the day
in OR 1, and a different surgeon is doing the first case in
OR 2. Several add-on cases have been submitted for the
day, the longest of which needs the microscope being used
by the surgeon in OR 1. There are no other cases in OR 2.
The OR 2 is scheduled to finish before any other OR and
has staffing planned for the same hours. To reduce ex-
pected overutilized OR time, the longest add-on case (i.e.,
the one with the microscope) should be1 the add-on case
performed in OR 2. That decision is good provided the case
in OR 1 will finish before the first case of the day in OR 2.
That probability depends not only on the expected OR
time of the cases, but also on the uncertainty of the
estimates.1,4

For example, consider the sequencing of a surgeon’s
list of cases in the same OR on the same day. To reduce
the mean tardiness of cases, cases with short predictable
OR times should be performed before cases that are
longer or have large uncertainty in OR times.1,5 A brief
mediastinoscopy should be performed before esopha-
gectomy. The unpredictability of the preceding case in
an OR can be quantified by its probability of finishing
more than 1 h late.6

For these four and other common probabilistic prob-
lems, when there are historic data available for the sur-
geon and the procedure(s) scheduled, the previously
developed statistical methods are very accurate. The
percentages of cases exceeded by lower and upper pre-
diction bounds match those specified within 1%.1 For
example, if the 90% upper prediction bound for the OR
time of a newly scheduled case is 3.0 h, the actual
probability of that case having an OR time longer than
3.0 h is likely somewhere between 90% and 91%. The
calculated probability of one case lasting longer than
another case matches the actual probability within 1%.1

For example, if the calculated probability that one case
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will take longer than another case is 67%, the actual
probability is likely somewhere between 66% and 68%.

However, these methods cannot be applied to the ap-
proximately 22% of cases of a procedure(s) that the sur-
geon has not scheduled at least twice before.6 This limita-
tion is commonplace. Among outpatient cases in the
United States with an anesthesia provider, 20% were of a
procedure(s) performed four times or less per workday
nationwide, and 36% of cases were of a procedure(s) likely
performed an average of less often than once per facility
per year.7 At private hospitals, there can be more than
5,600 surgeon preference cards (i.e., at least 5,600 combi-
nations of surgeon and procedure(s)).8 At academic hospi-
tals, there can be more than 13,000 surgeon preference
cards.9 More than 75% of procedure(s) can be performed
just once or twice annually.10 More than half of cases can
be of a procedure(s) scheduled by the surgeon less than
three times per year.11

The 22% of cases with few or no data disproportion-
ately affect decision making under uncertainty. These
cases tend to be distributed randomly among cases at
facilities. If any one such case is part of a series of cases,
then the time to complete that series of cases cannot be
estimated using the previously described2,3,6,4 methods.
The more cases performed per OR per day, the less
useful the existing science is.

Previous efforts to address this challenge of cases with
few or no historic data focused on using data classified
by procedure(s) alone, or with type of anesthesia.2,12,13

Despite some encouraging results,2,12,13 these methods
have problems in implementation.

First, pooling procedure(s) among surgeons or facilities10

provides only modest gains, because the problem is gener-
ally not that a surgeon schedules a procedure(s) that usu-
ally is performed by another surgeon at the facility, but
rather that many procedure(s) are rare.10,14 There are thou-
sands of Current Procedural Terminology or International
Classification of Diseases’ procedure codes, and surgeons
persistently produce new technologies.

Second, performing analyses with data both pooled and
not pooled by surgeon can result in inconsistent decisions,
making instructions for clerks confusing. For example, con-
sider a mean of 3.0 h and 90% upper prediction bound of
5.5 h for 11 cases scheduled by 5 surgeons versus a mean
of 2.0 h and 90% upper prediction bound of 4.0 h for 2
cases of the surgeon scheduling the new case. Qualitative
instructions cannot reconcile such results.

Third, studies show consistently that the surgeon is a
strong predictor of OR time, second only to the proce-
dure(s).15 Some surgeons are consistently slower or faster
than others.15 Therefore, excluding classification by sur-
geon appropriately reduces face validity of recommendations.

In this article, we propose and validate a solution:
Bayesian statistical methods. When there are no historic
data, the predictive distribution of the OR time of a
future case is centered at its scheduled OR time. In

addition, its proportional uncertainty is based on that of
other surgeons and procedures. When there are a mod-
erate or large number of historic data, those data alone
are used in the prediction. When there are a small num-
ber of historic data, a weighted combination of the
scheduled OR time and historic data are used.

Methods

Data Set Used
The data set included the OR times of all 65,661 cases

performed between January 1, 1996, and December 31,
1999, at an academic hospital’s tertiary surgical suite and
ambulatory surgery center. Procedures were as de-
fined by the Current Procedural Terminology code(s).
There were 19,838 different combinations of surgeon,
scheduled procedure(s), and presence or absence of
an anesthesia provider. We used data analyzed previ-
ously, so results2,3,6,4,10 can be compared. Scheduled
(vs. actual) procedure code(s) were used, because for
a future case for which a prediction bound is being
calculated, only the scheduled procedure(s) would be
known.16

Lower and Upper Prediction Bounds
Let the random variable Xk refer to the natural loga-

rithms of OR times classified by15 the kth combination of
surgeon, scheduled procedure(s), and anesthetic, k � 1,
2, . . . , p. For brevity, we henceforth refer to each of the
p combinations as “surgeon and procedure(s).” The nk

previously observed (historic) OR times in hours for the
kth combination of surgeon and procedure(s) are
exp�xk1�, exp�xk2�, ..., exp�xknk

�. The sample mean of the
nk historic data xk1, xk2, ..., xknk

equals x�k, and the sample
variance equals �̂k

2. The logarithm of the scheduled OR
time in hours for the next case is xsk

�. The objective is to
predict the OR time of the next case, exp�Xk

��. We use *
to represent the next case throughout the article.

From equations 8 and 17 in the appendix, the 5%
lower Bayesian prediction bound equals

exp��k
� � t0.05, 2�k

� · ��k
�

�k
� ·

1 � � � nk

� � nk
�, (1)

where

�k
� � xsk

� ·
�

� � nk
� x�k ·

nk

� � nk
, (2)

�k
� � � �

nk

2
, (3)

�k
* � � �

1

2 �
i � 1

nk

�xki � x�k�2 �
nk ��xsk

* � x�k�2

2�� � nk�
,

(4)

and t0.05, 2�k
� is the 0.05 percentile of the t distribution
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with �k
� degrees of freedom (e.g., t0.05, 2�k

� � �1.65 for
large �k

�). The 90% upper bound is calculated with
t0.90, 2�k

�.
The Bayesian setup allows us to estimate prediction

bounds (equation 1) for cases with no or very few
historic data. Furthermore, the setup shows how to
combine optimally prior information with available his-
toric data. The values of �, �, and � are obtained (see
appendix) by using all historic data, without regard to
the combination of surgeon and procedure(s). The prior
estimates of � and � are revised as data on nk OR times
become available for the kth surgeon and procedure(s).
Equations 3 and 4 show how the sample variability
revises the prior estimates of � and �, which affect the
variance component in the predictive distribution (i.e.,
the square root term in equation 1). In addition, the
parameter � expresses how the prior (logarithm of the
scheduled OR time) xsk

� and the historic mean OR time x�k

should be combined. Equation 1 shows that xsk
� has a

substantial influence for nk 	 �, but that its influence
diminishes with larger sample sizes. For large sample
sizes, the Bayes approach of equation 1 converges to the
result previously reported and given in equation 8.

Testing for the First New Case Taking Longer Than
the Second New Case
The probability that one case will last longer than another

is estimated using equations 18–20 in the appendix.

Probability That a New Case Will Finish More Than
1 h Late
From equation 17 in the appendix, the probability that

a new case will finish more than L hours late equals

P � t(2�k
�) 


ln(exp(xsk
�) � L) � �k

�

��k
�

�k
� �

1 � � � nk

��nk

� ,
(5)

where t�2�k
�� refers to the t distribution with 2�k

� degrees
of freedom. For testing, we use L � 1 h.

Mean Operating Room Time
From the posterior distributions in the appendix and

equations 2–4, the point estimate of the mean OR time
can be estimated as

exp��k
� �

1

2
·
�k

�

�k
��. (6)

The mean is relevant economically for scheduling, be-
cause it is proportional to the total OR time.

Testing the Accuracy and Usefulness of the
Estimates and Predictions
To test the validity of lower prediction bounds from

equation 1, several hundred thousand samples were

taken with replacement from the population of 65,661
cases. For each sampled case, the following six steps
were followed:

1. The logarithm of the scheduled OR time �xsk
�� was

calculated.
2. The case’s combination of surgeon and procedure(s)

(i.e., k) was determined.
3. All other cases of that same combination of surgeon

and procedure(s) were determined and used as his-
toric data. Therefore, nk equaled the number of cases
in the data set of the kth combination minus the one
case selected at random.

4. From the first and third steps, �k
�, �k

�, and �k
� were

determined from equations 2, 3, and 4, respectively.
5. Using the posterior parameters from the fourth step, the

prediction bound was estimated by applying equation 1.
6. If the actual OR time of the selected case was less

than the value of the lower prediction bound from
the fifth step, an indicator value was set equal to 1.
Otherwise, the indicator value was set equal to 0.

The relative frequency of 1s and 0s from the sixth step
was determined. The samples were drawn with replace-
ment until the width of the 95% confidence interval for
the proportion of cases exceeded by the prediction
bounds was calculated to within 0.12%. The process was
repeated for the upper prediction bounds. The process
was also repeated after limiting the data to the 44,120
cases not used to estimate �, �, and � in equations 2–4.

To evaluate the accuracy of the process of comparing
two future OR times using equations 18–20, two cases
were selected at random with replacement from the
65,661 cases. The case with the longest scheduled OR
time was tested for the probability of its taking longer
than the case with the shorter of the scheduled OR
times. Whether the first case was truly longer than the
second case was recorded as a 1 for yes and 0 for no. The
process was repeated 2 million times. The results were
stratified by the estimated probability rounded to the
nearest 0.05. The average of the probabilities for each
bin of a width of 0.05 was compared to a ratio, with the
numerator being the sum of the count of occurrences for
the first case truly being longer than the second case and
the denominator being the number of simulations with
entries in the bin.4

To compare the mean absolute errors of scheduling a
new case using either equation 6 or the scheduled OR
time, samples were drawn with replacement from the
65,661 cases. The process was continued until the mean
difference had been estimated to within 0.1 min.

Results

Lower and Upper Prediction Bounds
The Bayesian prediction bounds were accurate to

within 2% (see appendix). The 90% upper bounds were
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exceeded by 9.7% of the actual OR times (i.e., were
conservative by 0.3%). The 5% lower bounds exceeded
4.9% of the actual OR times. Excluding the 33% of cases
used to estimate the parameters (i.e., only studying sur-
geon and procedure(s) combinations with fewer than 29
historic cases), the 90% upper bound accuracy was
10.2%, and the 5% lower bound accuracy was 5.5%.

A heuristic for upper and lower prediction bounds is
to add or subtract half of the scheduled OR time. The
heuristic was reasonable for the studied hospital be-
cause, in the absence of historic data for the combina-
tion of surgeon and procedure(s), the Bayesian 90%
upper prediction bound equaled 149% of the scheduled
OR time and the 5% lower prediction bound equaled
57% of the scheduled OR time. Use of this heuristic
would reduce patient and surgeon waiting versus trying
to use the scheduled OR time itself plus or minus some
value (e.g., 1.5 h).2 Nevertheless, it would be a poor
choice to skip use of the historic data and instead simply
take a percentage of the scheduled OR time. Figure 1
shows that the variance differs among combinations of
surgeon and procedure(s). Using the same percentages
for all combinations results in an overall accurate cover-
age rate, but a rate that is too high or low for many
combinations. Figure 2 shows this result in a histogram
of the ratio of the 90% upper Bayesian prediction bound
to the scheduled OR time for all cases.

Testing for the First New Case Taking Longer Than
the Second New Case
The Bayesian method was used to compare the OR

times of 100% of the pairwise combinations of cases. The
predicted probability of one case being longer than an-
other was estimated to within 0.7% (table 1). This
means, for example, that if the predicted probability is
67%, likely the actual probability is also close to 67%.

Probability That a New Case Will Finish at Least
1 h Late
A heuristic to sequence a surgeon’s list of cases to

reduce waiting past scheduled start times (tardiness) is
to schedule the shortest case(s) first.1,5 Theoretical jus-
tification for use of this heuristic for ORs has not previ-
ously been described. When historic data are absent or
ignored, nk � 0 in equations 2–4. Equation 5 shows
that, then, each increase in the scheduled OR time re-
sults in an increase in the probability that the case will
finish more than 1 h late. Figure 3 shows the result
graphically. The equations apply for any other interval
desired (e.g., case finishing 15 min late).

The most common scheduled OR time in the studied
data was 2.5 h. All such cases were considered. Historic

Fig. 1. Gamma distribution probability plot of the inverse of the
variance of operating room times, one value for each of the 302
combinations of surgeon and scheduled procedure(s) with at
least 30 cases. If the data were from a gamma distribution, the
plotted values would fall along a straight line extending from
the lower left corner of the plot toward the upper right corner.
Using the method of moments, the corresponding parameters
of the resulting inverse gamma distribution were � � 2.32 and
� � 0.142.

Fig. 2. Histogram of the ratio of the 90% upper Bayesian pre-
diction bound to the scheduled operating room (OR) time for all
cases. From the 65,661 cases, 25,000 random samples were
taken with replacement. Equation 1 was applied. The histogram
shows the 24,004 for which the 90% upper prediction bound
was between 75% and 225% of the scheduled OR time. If the
historic data were not used and only the scheduled OR time (i.e.,
nk � 0 in equations 2–4), all cases would have a 90% upper
prediction bound equal to 149% of the scheduled OR time.
There is a peak with many cases at that percentage, because this
best overall percentage is used for those cases from combina-
tions of surgeons and procedure(s) with little or no historic
data.

Table 1. Pairwise Comparison of Operating Room Times

Range of Predicted
Probabilities That Case with

Longer Scheduled OR Time Will
Take Longer Than Case with

Shorter OR Time

Difference between
Predicted and

Observed Percentage, %

50% 	 probability � 55% 0.2
55% 	 probability � 60% �0.1
60% 	 probability � 65% �0.4
65% 	 probability � 70% �0.1
70% 	 probability � 75% �0.6
75% 	 probability � 80% �0.5
80% 	 probability � 85% �0.0
85% 	 probability � 90% 0.0
90% 	 probability � 95% 0.5
95% 	 probability � 100% 0.7

The predicted percentage equaled the sum of the probabilities divided by the
number of samples with replacement (102,691 to 783,731). The observed
percentages equaled the number of occurrences divided by the number of
samples. The reported endpoint was the difference of the predicted and
observed percentages. The differences have SEs less than 0.2%.

OR � operating room.
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data were ignored (i.e., nk set equal to 0, while our
estimated values for � and � were used). The predicted
percentage of cases finishing more than 1 h late was
13%. The actual percentage was 15% (fig. 4).

When historic data are available, they can be used to
make a Bayesian prediction of the probability of a case
finishing more than 1 h late. Figure 1 shows that differ-
ent combinations of surgeon and procedure(s) have dif-
ferent variances. Consequently, among cases with the
same scheduled OR time, depending on the historic
data, there can be a wide range of Bayesian predicted
probabilities that each case will finish more than 1 h late
(fig. 4, vertical axis). Actual proportions accurately track
these observed probabilities, as does the management
endpoint of tardiness (0 if finishes early, otherwise min-
utes finished late).

The implication is that for sequencing surgical cases,

historic OR times should be used when they are avail-
able, in addition to the scheduled OR times.

Mean Operating Room Time
The above results apply to decision making under

uncertainty. When scheduling an OR case based on the
efficiency of use of OR time, the mean OR time is
relevant.1,17,18

The Bayesian estimate of the mean in equation 6 and
the scheduled OR times were compared with the actual
OR time. With respect to bias, whereas the Bayesian
method underestimated the actual OR time by an aver-
age of 3.2 min, the scheduled OR time underestimated it
by an average of 8.6 min. With respect to precision, the
mean absolute error of the Bayesian estimate was 3.0
min less than that of the scheduled OR times. Although
the Bayesian method was significantly (P � 0.0001)
more accurate on both criteria, the differences were too
small to be of practical advantage when focusing on the
mean OR time.

Discussion

We proposed and validated a practical way to calculate
prediction bounds and compare the OR times of cases,
even when there are few or no historic data for the
surgeon and the scheduled procedure(s). As summarized
in the introduction, the latter situation arises frequently
in both tertiary surgical suites and outpatient surgery
centers. Cases without data have a disproportionately
large impact on OR management decision making, be-
cause any one case without data previously meant that
no data-driven recommendation could be obtained. The
Bayesian method can be used for (1) deciding when
patients should be ready on the day of surgery, (2)
adding or filling holes in the OR schedule, (3) sequenc-
ing of cases when faced with a constraining resource
(e.g., the surgeon or an expensive piece of equipment),
and (4) sequencing a surgeon’s list of cases.

We also applied our Bayesian formulation to study how
and when historic data can improve OR management
decision making. When historic data are available, they
should be used in combination with (not in lieu of) the
scheduled OR time. The results show that this is not
because the historic data substantially improve the esti-
mate for the average OR time. Rather, historic data pro-
vide value in estimating the proportional variation in OR
time.

Benefits
The benefit of the Bayesian method is in reducing

physician and patient waiting, but probably not a direct
reduction in overutilized OR time. The OR management
decisions aimed at reducing expected overutilized OR
time include scheduling cases before the day of surgery,

Fig. 3. Predicted probability of a case finishing more than 1 h
late based only on the scheduled operating room (OR) time. The
calculation was made using equation 5 and the parameters
estimated in the appendix, with nk set equal to 0 in equations
2–4. The results can be compared with figure 4.

Fig. 4. Differences in actual operating room times among cases
scheduled to last 2.5 h. The choice of 2.5 h was made because
this was the most common (modal) scheduled operating room
time. There were 4,219 such cases. For each case, equation 5 was
used to estimate the probability that the case would finish more
than 1 h late. These probabilities were binned into four non-
overlapping intervals, rounding down at category breaks. The
actual probability of finishing more than 1 h late is shown on
the horizontal axis of the left pane. The average tardiness is
shown on the right pane. The tardiness is the minutes late that
the case actually finished, but set equal to zero if it finished
earlier than scheduled. Although the probability of a case fin-
ishing late is simple conceptually and has an analytical solu-
tion, decisions should be made on the day of surgery based on
reducing mean tardiness.1 The error bars show the 95% confi-
dence intervals.
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scheduling add-on cases, and releasing allocated OR
time.1,17,18 Provided OR staffing and allocations have
been made based on finding the optimal balance of
underutilized and overutilized OR time, such decisions
can then reasonably be made using the expected mean
OR time of each case.1,17,18 When there are at least two
historic cases of the same combination of surgeon and
procedure(s), the incremental reduction in overutilized
OR time has been shown to be negligible from increas-
ing the accuracy of the prediction of the OR time of a
new case versus using the mean of the OR times of the
historic cases.1 The reason is that decisions to reduce
overutilized OR time are affected much more by the
day-to-day variability in the total hours of cases than by
variability in OR time prediction.1 People generally work
late because of extra cases, not underestimation in the
time to complete each case, because rarely does the
underestimation change whether and when the case is
performed.19 In the current article, we show that the
scheduled OR time alone is nearly as good a predictor of
the expected mean OR time of a new case as is the
Bayesian method. Therefore, the incremental reduction
in overutilized OR time from further improvements in
predicting OR times is likely negligible.

Several features of the Bayesian method can be impor-
tant for implementation. First, because the scheduled
OR time affects whether a case is scheduled into an OR
allocation on a specific day,1,18 some surgeons resist
reduction in their autonomy in choosing the value. Such
organizational resistance to change is irrelevant to the
Bayesian method, because the scheduled OR time alone
can still be used for that purpose. Second, the premise of
relying on expert judgment when there are few data
versus predominantly historic data when there are many
data has face validity to hospital audiences without sta-
tistical training. Third, the information system using the
Bayesian method can always provide an estimate or
decision recommendation, eliminating the need to edu-
cate scores of clerks, physicians, and nurses as to the
interpretation of absence. Fourth, equations 2–4 show
that the information system need not use the raw data
for calculation, only the sample size, mean, and variance
(i.e., one record for each combination of surgeon and
procedure(s)). Finally, we speculate about the advantage
of combining the Bayesian method with new real-time
methods of collecting OR time data (e.g., from vital
signs).20 An information system can now function auton-
omously, providing recommendations and progressively
increasing its usefulness as its historic data increases.

Limitations
The Bayesian method relies on the logarithms of the

scheduled OR times not being consistent underestimates
of the logarithms of OR times. At some facilities, sur-
geons and schedulers may systematically underestimate
OR times to get cases onto the OR schedule.21 Without

adjustment, the Bayesian method may be inaccurate, and
the argument of the preceding paragraph will be incor-
rect. Bias can be monitored and incorporated into the
equations in the Methods simply by changing each listed
xsk

� to �xsk
� � ��, where � is the overall or specialty-

specific proportional bias. Feedback can alternatively be
provided immediately at the time when the case is
scheduled if the Bayesian estimate for the expected
mean OR time differs substantially from the scheduled
OR time.

Our work is limited in providing one Bayesian method,
in no way necessarily the best. We only considered
statistical methods that require, in practice, no mathemat-
ical calculation other than some arithmetic and exponen-
tials. That way, the method (equations 1–20) can be imple-
mented as an SQL database query and/or run from a Web
page. The latter is what we have been doing in practice.
Bayesian methods with different distributional assumptions
generally have computational solutions requiring numeri-
cal integration, which we have found challenging for wide-
spread hospital implementation.

Appendix

Previous Studies Based on Assumption of Log
Normal Distribution
Assume that Xk, the natural logarithm of OR time, follows a normal

distribution:

Xk 	 N�Mk, �k
2�, (7)

where Mk is the unknown mean and �k
2 is the unknown variance. This

assumption has been validated previously.13,22 For example, figure 5
shows the natural logarithms of OR times for a surgeon’s 105 strabis-
mus surgery cases with one muscle (chi-square test of normality, P �
0.71; Lilliefors test of normality, P � 0.69). Figure 6 shows the corre-
sponding probability plot. Figures 5 and 6 of Dexter and Traub2 show
data for laparoscopic cholecystectomy, and dependence of the skew-
ness of these distributions on nk.

From the assumption of equation 7, the 5% lower prediction bound
for the OR time of a new case, that is for exp�Xk

��, can be obtained
accurately1,2 by taking

Fig. 5. Histogram of natural logarithm of operating room (OR)
times for a single surgeon’s strabismus surgery cases. The 105
cases are those cases that the surgeon scheduled as Current
Procedural Terminology 67311, “Strabismus surgery, recession
or resection procedure; one horizontal muscle.”
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exp�x�k � t0.05,nk�1 · ��̂k
2 ·

1 � nk

nk
�, (8)

where x�k and �̂k
2 are the sample estimates from the nk historic data. The

90% upper bound is calculated by substituting t0.90,nk� 1 into equation 8
(e.g., t0.90,nk� 1 � 1.28 for large nk).

1,3,6 If nk � 2, the prediction bounds
cannot be calculated, because �̂k

2 cannot be estimated from 0 or 1 cases.
Furthermore, although the prediction bounds are valid for small nk,

2,3,6

they are often not useful being so wide.
From the assumption of equation 7, the comparison of the OR times

of two new cases is addressed by the Behrens-Fisher problem (i.e.,
Student t test with unequal variances).1,4,23 We refer to the first new
case with subscript 1 and the second new case with subscript 2,
whichever combinations of surgeons and procedures(s) they are from.
To test for the first new case being longer than the second new case,
that is for exp�X1

�� 
 exp�X2
��, let23

c �

�̂1
2 ·

1 � n1

n1

�̂1
2 ·

1 � n1

n1
� �̂2

2 ·
1 � n2

n2

(9)

and

ttest �
x�1 � x�2

��̂1
2 ·

1 � n1

n1
� �̂2

2 ·
1 � n2

n2

. (10)

Then,23

P
exp �X1
�� 
 exp�X2

��� � P
X1
� 
 X2

� �

� P
X1
� � X2

� 
 0�

� cP
t�df1� 	 ttest� � �1 � c�P
t�df2� 	 ttest�,
(11)

where

df1 �
n1 � 1

c
and df2 �

n2 � 1

1 � c
. (12)

Because the values of df are not integers, we calculate the probabilities of
the t distribution from its relation with the Incomplete Beta Function.24

Press et al.24 provide the computer code. The primary limitation to
equations 9–12 is that to calculate �̂1

2 and �̂2
2, n1 
 2 and n2 
 2.

Two Additional Assumptions for Inference and
Prediction in the Absence of Historic Data
Suppose that no surgeon- and procedure(s)-specific historic OR time

data are available. To predict the OR time of a new case and to

calculate the prediction bounds, we make two assumptions, one about
the prior distribution of �k

2 and the other about Mk.
Assume that �k

2 follows an inverse gamma distribution:

�k
2 	 IG��, ��, (13)

where � and � are unknown parameters common to all combinations
of surgeons and procedure(s) at the facility. Following Strum et al.13,22

in their investigations of the statistical distributions of OR times, we
considered those combinations of surgeon and procedure(s) that were
performed a moderate to large �nk 
 30� number of times. There
were 302 such combinations of surgeon and procedure(s) correspond-
ing to 21,541 cases. The probability plot in figure 1 shows that the
assumption of the inverse gamma distribution is reasonable (chi-square
test, P � 0.51; Kolmogorov-Smirnov, P � 0.88).

Assume that the conditional prior distribution of Mk given �k is
normal with prior mean �k and variance �k

2/�:

Mk  �k 	 N ��k,
�k

2

� �. (14)

The validity of equation 14 is considered in the next section. The �
represents the ratio of the variance of an individual observation to the
variance of the mean. If � were a small value (e.g., � � 1 historic case),
our prior information about Mk would be vague, making the incremen-
tal value of any historic data relatively influential.

A consequence of equations 7 and 14 together is that the conditional
prior distribution of Xk given �k is normal with prior mean �k and variance
�k

2 � ��k
2/��. Combining terms, the variance equals �k

2 · ��� � 1�/��. Bring-
ing in the inverse gamma distribution for �k

2 from equation 13, the
predictive prior distribution of the logarithm of the OR time of the next
case, Xk

�, is a scaled Student t distribution25:

��

�
·

�

1 � �
�Xk

� � �k� 	 t�2��. (15)

Prior Values for Use in Inference and Prediction in
the Absence of Historic Data
We obtained the prior values for � and � using the data in figure 1.

Using the method of moments, the corresponding parameters of the
inverse gamma distribution were � � 2.32 and � � 0.142.

We considered the logarithm of the scheduled OR time of the new
case, xsk

�, to be the prior value for �k and the prior prediction of Xk
�.

Figure 7 shows a histogram of the prediction errors, �xk
� � xsk

��, for the
18,381 cases for which nk 	 2. The symmetric distribution around
zero confirms that xsk

� is a good prior value, because it provides an
unbiased prediction of the logarithm of the actual OR time in hours.
This implies that exp�xsk

�� provides an unbiased prediction of the 50th
percentile of exp�Xk

��, which is slightly less than the expected (mean)
value of exp�Xk

��. We would therefore expect that the scheduled OR
time would slightly, but significantly, underestimate the actual OR

Fig. 6. Normal probability plot of natural logarithm of operating
room (OR) times for a single surgeon’s strabismus surgery. The
105 cases are those cases that the surgeon scheduled as Current
Procedural Terminology 67311, “Strabismus surgery, recession
or resection procedure; one horizontal muscle.” If the data were
from a normal distribution, the plotted values would fall along
a straight line extending from the lower left corner of the plot
toward the upper right corner.

Fig. 7. Histogram of the logarithm of the ratio of the scheduled
to actual operating room (OR) time for the 18,381 cases of the
15,916 combinations of surgeon and procedure(s) for which
there were either one or two cases. Sixteen cases of the 18,381
are not shown, because they fall outside the shown range.
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time. This was the finding reported in the final paragraph of the
Results. In those analyses, the expected (mean) value averaged the
52nd percentile of exp�Xk

��, with lower and upper quartiles of 51% and
52%, respectively.

We estimated the prior value for � from the variance of the prediction
errors. Using the 21,541 cases for which we estimated � and � above,
Var�xk

� � xsk
�� � 0.120. The variance of a t distribution with 2� degrees

of freedom equals26 2�/�2��2�. From the result of equation 15,

Var�xk
� � sk

�� �
�

�
·

� � 1

�
·

2�

2� � 2

�
�

� � 1
·

� � 1

�

� 0.120. (16)

Substitution of the prior values for � � 2.32 and � � 0.142 from two
paragraphs above, � � 8.68 cases.

The assumption in equation 14 was validated by studying the distri-
bution of �x�k � xsk

��, with x�k and xsk
� taking the places of Mk and �k,

respectively. When the variances from figure 1 were rounded to the
nearest 0.05, the interval 0.05 	 �̂k

2 � 0.10 included the most cases,
10,562, as well as many (156) different values of k. Figure 8 shows a
normal probability plot for �x�k � xsk

��. The functional (normal) form of
equation 14 is reasonable. From Strum et al.,22 the undulation around
the straight line in figure 8 was the expected consequence of our data’s
xsk

� being in 15-min intervals, resulting in �x�k � xsk
�� taking a small set

of values.

Updating the Estimates and Predictions Using
Historic Data
Our prior distributions in equations 13 and 14 have the advantage

that for any sample size and for any values of the observations sampled
from the model of equation 7, the posterior distributions of �k

2 and Mk

belong to the same family.25 The Bayesian literature refers to such prior
distributions as conjugate priors. Specifically, the posterior distribution
of �k

2 is again an inverse gamma distribution. The posterior of Mk and
the posterior predictive distribution of Xk

� are scaled t distributions,

with revised parameters that update the prior values with the sample
information:

��k
�

�k
� ·

1 � � � nk

� � nk
· �Xk

� � �k
�� 	 t�2�k

��, (17)

with parameters given in equations 2–4.
From the posterior predictive distribution of equation 17, equations

9–12 are modified to provide the Bayesian comparison of the OR times
of two cases:

c �

�1
�

�1
� ·

1 � � � n1

� � n1

�1
�

�1
� ·

1 � � � n1

� � n1
�

�2
�

�2
� ·

1 � � � n2

� � n2

(18)

and

ttest �
�1

� � �2
�

��1
�

�1
� ·

1 � � � n1

� � n1
�

�2
�

�2
� ·

1 � � � n2

� � n2

,
(19)

where

df1 �
2�1

�

c
and df2 �

2�2
�

1 � c
. (20)

Assessment of Sensitivity of Estimates to Prior
Values of �, �, and �
Using only cases from 1996 and 1997, there were 124 combinations of

surgeon and procedure(s) with nk 
 30 versus 302 combinations with all
the data. The estimated � � 1.70 and � � 0.089, versus � � 2.32 and � �
0.142 with all the data. From these 7,405 cases, � � 14.9 cases, versus
from all 21,541 cases, � � 8.68 cases. Applying the �, �, and � from 1996
and 1997 to all of the data, the 90% upper bounds were exceeded by
10.0% of cases. The 5% lower bounds exceeded 5.1% of cases. Therefore,
the Bayesian method was insensitive to the choice of �, �, and �. Further-
more, repeating with � � 1.49 cases (an order of magnitude less), the
results were the same, within 0.2%.

In the next set of calculations, we assumed that the prior values are
updated annually (i.e., 1996–1997 prior values were applied to 1998
data, and 1996–1998 prior values were applied to 1999 data). We
assumed that the lookup table with the running totals of nk, �xki, and
�xki

2 for each combination of surgeon and procedure(s), for use in
equations 2–4, is updated nightly. For example, to estimate prediction
bounds for cases performed on Tuesday August 4, 1998, the running
totals used were for January 1, 1996, through August 3, 1998. Then, the
calculated 90% upper bounds were exceeded by 8.0% � 0.1% of cases
(n � 32,930). The 5% lower bounds exceeded 6.9% � 0.1% of cases.
Repeating using � � 1.49 cases, results were the same, within 0.2%.
Therefore, improvement in accuracy would rely on modifying the
assumption of equation 13 of a common � and � for those combina-
tions of surgeon and procedure(s) with little to no data, not those
combinations with small to large numbers of historic cases. Those
cases with little to no data are precisely those for which � and � cannot
be estimated directly.
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