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Endothelium-derived Hyperpolarizing Factor

A Cousin to Nitric Oxide and Prostacyclin
Robert M. Bryan, Jr., Ph.D.,* Junping You, M.D., Ph.D.,† Elke M. Golding, Ph.D.,‡ Sean P. Marrelli, Ph.D.‡

There is now strong evidence that an endothelial mechanism,
other than nitric oxide or prostacyclin, exists for dilating arter-
ies and arterioles. This third pathway has been named endothe-
lium-derived hyperpolarizing factor (EDHF) and should not be
confused with endothelium-derived relaxing factor, which is
nitric oxide. Currently, there are several ideas for the mecha-
nism of EDHF, which may vary among vessels of different
organs and species. During some pathologic states, EDHF can
be up-regulated. This up-regulation often occurs as the dilator
effects of endothelium-derived nitric oxide are suppressed. The
up-regulated EDHF may serve in a protective capacity to help
maintain blood flow to organs and tissues during these stressful
states. Many anesthetics attenuate the dilator actions of EDHF;
however, the full clinical implications of this anesthetic-related
attenuation are not known. Like its cousins, nitric oxide and
prostacyclin, EDHF is an important regulator of blood flow and
should prove to be an important clinical consideration as we
gain more knowledge of its mechanisms of action.

THE endothelium consists of a single layer of cells on the
luminal surface of all vessels of the vascular system (fig.
1A). Initially, it was thought that the endothelium func-
tioned only as an antithrombotic surface to prevent ag-
gregation of blood products and as a barrier to prevent
exchange of certain molecules between plasma and tis-
sue. However, in the 1980s, it became apparent that the
endothelium also regulates the contractile state of vas-
cular smooth muscle. Activation of receptors on endo-
thelium or mechanical forces exerted on endothelial
cells releases factors that contract (thromboxane and
endothelin) or relax (nitric oxide and prostacyclin) vas-
cular smooth muscle.1,2 The discovery that the endothe-
lium releases these relaxing and contracting factors
sparked new and exciting investigations into circulatory
control.

The single most significant contribution reported an
“endothelium-derived relaxing factor” that was later
identified as nitric oxide.3–5 On stimulation of endothe-
lial receptors or deformation of the endothelium by
mechanical forces, endothelial nitric oxide synthase
(eNOS) can be activated through increases of intracellu-
lar Ca2�, stimulation of protein kinases to synthesize
nitric oxide, or both (fig. 1B). The newly synthesized
nitric oxide diffuses from the endothelium to the vascu-
lar smooth muscle, where it stimulates soluble guanylyl
cyclase to generate cyclic guanosine monophosphate.
Through activation of protein kinase G, cyclic guanosine
monophosphate relaxes the vascular smooth muscle by
a number of mechanisms, which include decreasing cy-
toplasmic free Ca2�, decreasing sensitivity to Ca2�, or
both. In addition to generation of cyclic guanosine
monophosphate, other mechanisms of dilation for nitric
oxide have been reported.6,7 In a similar manner, pros-
tacyclin (PGI2) can be synthesized by cyclooxygenase
(COX) and released from the endothelium; however,
PGI2 elicits smooth muscle relaxation by stimulating
adenylyl cyclase and generation of cyclic adenosine
monophosphate2 (fig. 1B).

In the late 1980s and early 1990s, evidence began to
emerge that there was at least one additional endotheli-
um-dependent process responsible for relaxing vascular
smooth muscle. The process was characterized by an
essential hyperpolarization of the vascular smooth mus-
cle and could be blocked by inhibitors of potassium
channels. The process became known as endothelium-
derived hyperpolarizing factor (EDHF).8–10 Unlike its
predecessor, endothelium-derived relaxing factor,
which required approximately 6 yr before conclusively
being identified as nitric oxide, the mechanism of EDHF
remains controversial even today, more than 15 yr after
first being described. The elusive nature of EDHF is likely
due to the complexity of the mechanisms and the fact
that there are several EDHFs or mechanisms by which
the endothelium can hyperpolarize vascular smooth
muscle.

Endothelium-derived hyperpolarizing factor is defined
as a dilator process that (1) requires endothelium; (2) is
distinct from both endothelium-derived nitric oxide or
COX metabolites (i.e., PGI2); (3) dilates by hyperpolariz-
ing the vascular smooth muscle; and (4) involves potas-
sium channel activation, most often calcium-activated
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potassium channels (KCa).
11 Definitions of EDHF vary.

Some investigators reserve the acronym EDHF for that
factor whose dilation or smooth muscle hyperpolariza-
tion fits not only the above criteria but is also blocked by
a combination of charybdotoxin and apamin, but not
iberiotoxin and apamin (table 1).12 EDHF dilations can
be elicited by a number of endothelial agonists, shear
stress, or pulsatile stretch.11,13–21

The inclusion of the term factor in the name endothe-
lium-derived hyperpolarizing factor may not be appro-
priate in some vessels where a process, rather than a
single transferable factor, is responsible for the dilation.
Therefore, a more appropriate name to describe these
dilations where a transferable factor is not involved
would be endothelium-dependent hyperpolariza-
tion.22,23 This review retains the traditional name and
refers to the dilation as EDHF, independent of whether a
factor is involved.

Currently, our understanding of EDHF is limited. Most
studies to date have concentrated on understanding the
mechanism, whereas its role in regulating and coordinat-
ing blood flow has received much less attention. Our
limited knowledge precludes the medical community
from effectively manipulating EDHF in the clinical set-
ting. However, an evolving understanding of EDHF dur-
ing normal and pathologic states predicts that it will
become an important therapeutic target.22,23 In the fu-

ture, EDHF will likely be manipulated to aid in regulating
blood pressure and/or to selectively regulate perfusion
to vital organs such as the brain, heart, and kidney. The
purpose of this review is to acquaint the anesthesiologist
with EDHF, its role as a dilator mechanism, and the
potential clinical implications that may be derived from
understanding it and its role in circulatory control. In
this way, the anesthesiologist will be able to be follow
the field as it evolves and matures, with the potential to
eventually use EDHF as a therapeutic target in the oper-
ating room and intensive care unit. Just as endothelium-
derived nitric oxide has become an important consider-
ation for the practice of anesthesiology, EDHF is likely to
follow as we gain knowledge of its mechanisms of ac-
tion, its physiologic role, and its regulation by
anesthetics.

EDHF Dilations in Isolated Arteries and
Arterioles

Vascular reactivity is often studied in isolated arteries
and arterioles. The two most common methods are to
directly measure isometric force generation of the vessel
or to measure diameter changes of the vessel. For the
studies involving force measurement, a decrease in force
or relaxation of the smooth muscle is equivalent to
vessel dilation. When endothelial receptors are exposed
to certain agonists, a dose-dependent dilation or relax-
ation of the vessel occurs (figs. 2A–C, solid lines). De-
pending on the vessel size and vessel type, endothelium-
dependent dilations can be elicited by a number of
agonists, including acetylcholine, bradykinin, substance
P, adenosine triphosphate (ATP), adenosine diphos-
phate, uridine triphosphate, vasopressin, and histamine.
The endothelial-mediated dilations elicited by the above
agonists often involve the production and release of
nitric oxide, PGI2, or a combination of both (fig. 1).

After complete inhibition of nitric oxide synthase
(NOS) and COX to inhibit nitric oxide and PGI2 produc-
tion, respectively, residual dilation often remains (figs.
2A–C, dashed lines). Figures 2A–C depict models of the
residual dilations based on published results.24–26 The
difference between the original dilatory curve (solid

Fig. 1. (A) Diagram of an artery showing
endothelial and vascular smooth muscle
cells. (B) Mechanisms of endothelial-me-
diated dilations through nitric oxide
(NO) and prostacyclin (PGI2). AC � ad-
enylyl cyclase; cAMP � cyclic adenosine
monophosphate; cGMP � cyclic
guanosine monophosphate; COX � cy-
clooxygenase; eNOS � endothelial nitric
oxide synthase; sGC � soluble guanylyl
cyclase.

Table 1. K Channels Relevant to EDHF Studies

K Channel Inhibitor Note

BKCa* Iberiotoxin
Charybdotoxin
Tetraethylammonium

Tetraethylammonium is
selective up to 1 mM;
charybdotoxin also inhibits
some Kv channels and IKCa.

IKCa† Charybdotoxin
TRAM-34

Charybdotoxin also inhibits
some Kv channels and BKCa.

SKCa‡ Apamin
Dequalinium

Kir§ Ba2�� Ba2� is concentration selective
up to 100 �M.

* Large- or big-conductance Ca-activated K channels. † Intermediate-con-
ductance Ca-activated K channels. ‡ Small-conductance Ca-activated K
channels. § Inwardly rectifying K channels. � Barium ion.

EDHF � endothelium-derived hyperpolarizing factor; TRAM-34 � (1-[(2-chlo-
rophenyl) diphenylmethyl]-1H-pyrazole).
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lines) and the curve after inhibition of NOS and COX
(dashed lines) can be considered the portion of the
dilation that is attributable to nitric oxide and COX
metabolites. The residual dilatory curve after NOS and
COX inhibition may be shifted to the right24,25 (fig. 2A),
shifted to the right with a suppression in the maximum
response26 (fig. 2B), or identical to the original curve
before NOS and COX inhibition24 (fig. 2C). The residual
dilations after inhibition of NOS and COX in figure 2
(dashed lines) are generally considered to be the EDHF
component.

Endothelium-derived hyperpolarizing factor–mediated
dilations hyperpolarize the vascular smooth muscle by
15–30 mV.24,25,27 Note that smooth muscle hyperpolar-
ization is not unique to EDHF. Nitric oxide and PGI2 can
also hyperpolarize vascular smooth muscle to varying
degrees by activating potassium channels. The smooth
muscle hyperpolarization elicits relaxation (or dilation)
by decreasing the concentration of cytoplasmic free
Ca2� through closure of voltage-operated Ca channels in
the smooth muscle cell membrane. The cytoplasmic
concentration of free Ca2� is a major determinant of the
contractile state of smooth muscle. In general, increases
in Ca2� concentration produce contractions, whereas
decreases in Ca2� relax the smooth muscle cell. In ad-
dition to regulating Ca2� concentrations, the sensitivity
to cytoplasmic Ca2� can be regulated by kinases and
phosphatases to alter the contractile state of vascular
smooth muscle. However, it is not known whether
EDHF affects vascular smooth muscle sensitivity to Ca2�.

One of the defining characteristics of EDHF is that it is
inhibited by blocking potassium channels. A combina-
tion of potassium channel blockers is often required to
effectively block the response. Table 1 shows the potas-
sium channels most relevant to EDHF studies and their

inhibitors. Depending on the mechanistic model (see
“Mechanisms of EDHF Dilations”), the location of the
potassium channels involved with the EDHF response
can be on the endothelium, vascular smooth muscle, or
both.

Physiologic Role and Diversity
Because of the limited knowledge that we have regard-

ing EDHF, its role remains to be fully elucidated. Never-
theless, one observation that may provide a significant
clue as to its physiologic role is that EDHF seems to be
more prominent in smaller arteries and arterioles than in
larger arteries. This observation has been made in a
number of vascular beds, including those from the mes-
enteric, cerebral, ear, and stomach.24,28–32 In fact, con-
trol of vessel diameter in these smaller arteries and arte-
rioles by EDHF may be more important than
endothelium-derived nitric oxide. For example, proceed-
ing from larger to smaller arteries and arterioles, the
relative importance of EDHF increased while that of
endothelium-derived nitric oxide decreased.24,32 Be-
cause of the fundamental role of these smaller vessels in
the control of vascular resistance, it would therefore
seem that EDHF plays a significant role in the regulation
of vascular resistance and thus in the control of blood
flow during normal physiologic conditions. Although
there are uncertainties regarding the relative contribu-
tions of endothelium-derived nitric oxide and EDHF, it is
possible that EDHF may be the more important of the
two in normal regulation of blood flow in some organs of
the body.

Another physiologic role for EDHF may be in con-
ducted dilations of arterioles. When an artery or arteriole
is stimulated to dilate at a focal site, the dilation can be
conducted several millimeters upstream and down-
stream from the foci. Micropipette application of certain
substances onto the surface of arterioles induces both a
local vasomotor response as well as a response that is
propagated along the vessel, both upstream and down-
stream to the application. This phenomenon is termed
conducted vasomotor response. This conducted dilation
is involved with the spatial and temporal regulation of
blood flow within a microvascular network. For exam-
ple, optimum blood flow control in the exercising mus-
cle requires an overall coordination of vascular resis-
tances. Without a functional conducted dilator response,
areas within the microvascular network could be at risk
for insufficient delivery of oxygen during times of max-
imum exercise. The conducted dilation is an important
aspect of this coordinated response and is required to
maximize blood flow control.33

In the intact hamster cheek pouch or cremaster micro-
circulatory beds, application of acetylcholine at a focal
site produced a conducted dilation approximately 1 mm
upstream of the application.34,35 Inhibition of COX or
NOS had little or no effect on the conducted dilation.

Fig. 2. Effects of increasing agonist concentration on endothe-
lial-mediated dilations during control conditions (solid lines)
and after inhibition of nitric oxide (NO) and prostacyclin (PGI2)
(dashed lines). Three responses that often occur in arteries
after the inhibition are shown in A, B, and C.24–26 COX �
cyclooxygenase; EDHF � endothelium-derived hyperpolarizing
factor; NOS � nitric oxide synthase.
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However, inhibitors of P-450 epoxygenase, which in-
hibit EDHF dilations in some vessels, or blockers of KCa

significantly suppressed the conducted vasodilation to
acetylcholine.34,35 Thus, EDHF seems to have a major
role in conducted dilations and the coordination of vas-
cular resistances within the microcirculation.34,35

If EDHF has a widespread physiologic role, it follows
that it should be found in a number of vessel types.
Indeed, evidence for EDHF exists in a wide diversity of
arteries from mammals. In humans, EDHF or EDHF-like
dilations have been described in coronary arteries and
arterioles,36,37 cerebral arteries,38 renal arteries,39 inter-
lobar arteries,40 penile resistance arteries,41 internal
mammary arteries,42,43 subcutaneous resistance arter-
ies,44,45 radial arteries,46 gastroepiploic arteries,29 mes-
enteric arteries,47 and omental arteries.48,49 The wide-
spread existence of EDHF provides evidence for a
significant physiologic role in the regulation of blood
flow.

Most studies of EDHF have used isolated arteries and
arterioles, i.e., ex vivo vessels studied in a dish or organ
bath as mentioned previously. If EDHF is an important
regulator of blood flow, it must also be functional in
intact animals. EDHF or EDHF-like dilations have been
demonstrated in vivo in canine coronary and kidney
arterioles,50–52 hamster cremaster and cheek pouch ar-
terioles,34,35 rat cremaster arterioles,53 and rat mesen-
teric, hind limb, and sciatic nerve circulations.54,55 In
humans, forearm blood flow shows an EDHF-like dilation
with the administration of bradykinin or acetylcho-
line.56–58 Therefore, EDHF has been reported in a wide
diversity of vascular beds and in virtually all mammalian
species studied, most important of which is the human.

Hormones seem to alter the EDHF response. Estrogen,
the most studied of these hormones, seems to up-regu-
late EDHF in peripheral vessels and down-regulate EDHF
in the cerebral circulation. Relaxation responses in the
perfused mesenteric bed in male and female rats were
similar. The addition of a NOS inhibitor attenuated the
relaxation response in males but had no effect in fe-
males.59,60 The authors suggested that EDHF is function-
ally more important in females than males in the mesen-
teric circulation. In mesenteric arteries from female rats,
EDHF dilations were attenuated after ovariectomy when
compared with intact rats.61 Supplementing ovariecto-
mized rats with estrogen rescued the EDHF response.
Similarly, the EDHF response was reduced during
diestrus, a time of low estrogen, when compared with
estrus controls. Interestingly, supplementing male rats
with 17�-estradiol or the phytoestrogen daidzein up-
regulated EDHF in the aorta.62

In contrast to the peripheral circulation, EDHF in ce-
rebral arteries and arterioles is down-regulated by estro-
gen. The EDHF response in isolated rat middle cerebral
arteries was dramatically reduced in female rats as com-
pared with male rats. The EDHF response in ovariecto-

mized females was identical to the response in male rats
and could be reversed by estrogen replacement.63,64 In
vivo studies of pial arterioles in intact female rats, ovari-
ectomized rats, and ovariectomized rats with estrogen
replacement came to the same conclusion that estrogen
down-regulates EDHF.65 The up-regulation of EDHF after
ovariectomy involves gap junctions66 but does not seem
to be related to a repressed endothelial NOS-derived
nitric oxide–generating function.67

Pregnancy is characterized by an increased sensitivity
to endothelial dependent dilators.68,69 A number of stud-
ies provide strong evidence that an up-regulated EDHF
may be a major component to the vascular adaptations
to pregnancy.68–73 Interestingly, in preeclamptic pa-
tients, EDHF may not be up-regulated during pregnan-
cy.73,74 It is not known whether this failure to up-regu-
late EDHF is the cause or the result of the pathologic
condition.

The male sex hormone, testosterone, seems to in-
crease vascular tone or contractile state in cerebral ar-
teries by suppressing EDHF.75 An interesting twist in-
volving this study is that the reported EDHF was not
agonist induced but was present in the resting pressur-
ized state.

Cortisol may also alter EDHF dilations. Exposure of the
porcine coronary artery to cortisol for 24 h, but not 30
min, up-regulated EDHF-mediated dilations.76 Concomi-
tant with the up-regulation of the EDHF response, cyto-
chrome P-450 2C expression was increased. The authors
suggested that chronic cortisol exposure potentiates the
EDHF response by up-regulating an epoxygenase that
converts arachidonic acid to epoxyeicosatrienoic acids
(EETs) that are putative EDHFs.76

Mechanisms of EDHF Dilations
Although much of the mechanism is controversial,

there is agreement that an increase of free Ca2� in
endothelial cells is an initial step required for EDHF
dilations (fig. 3). Interestingly, it is this Ca2� increase in
endothelial cells that ultimately leads to the decrease in
smooth muscle Ca2� and dilation of the vessel. Thus,
during EDHF-mediated dilations, the concentrations of
Ca2� in endothelial and smooth muscle cells change in
opposite directions.

The evidence for a role of endothelial Ca2� is based on
the following observations. (1) Direct measurements in
endothelial cells showed that relatively large increases in
Ca2� occurred with EDHF dilations.77 (2) Ca2� iono-
phores, which directly increase endothelial Ca2� by se-
lectively increasing the membrane conductance to Ca2�,
elicited EDHF-mediated dilations without involvement of
receptor stimulation.26,64,77–81 (3) Cyclopiazonic acid,
which stimulates Ca influx via capacitative Ca entry,
elicited an EDHF response.82 (4) EDHF dilations are
inhibited by preventing Ca2� influx through nonselec-
tive cation channels.83
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On stimulation of endothelial receptors, Ca2� is
thought to be initially released from internal stores
through activation of phospholipase C and inositol
trisphosphate–gated Ca2�-release channels.26,84–87 This
initial Ca2� increase is sustained by an influx of Ca2� into
the endothelial cell from the extracellular mi-
lieu.82,83,86,87 In pressurized cerebral arteries, the resting
Ca2� concentration in endothelial cells ranges from 130
to 160 nM.27,64,77,84,88,89 On stimulation of endothelial
receptors with ATP or uridine triphosphate (agonists for
P2Y2 receptors), endothelial Ca2� increased to 400–
700 nM and elicited an EDHF dilation27,64,77,84,90 (fig. 3).
The Ca2� threshold for eliciting an EDHF-mediated dila-
tion is approximately 340 nM.77 For comparison, the
Ca2� threshold for activation of NOS in the same artery
is approximately 230 nM.77

The manner in which the increase in endothelial Ca2�

transitions into the next step of the EDHF mechanism is
a controversial point. It is at this step where the pro-
posed mechanisms for EDHF diverge. The major mech-
anisms currently being considered to explain EDHF di-
lations are (1) arachidonic acid metabolites, (2) the
monovalent cation, K�, (3) gap junctions, (4) and hydro-
gen peroxide. Other candidates for EDHF have been
suggested, but evidence for these does not warrant dis-

cussion at this time.91–94 The major proposed mecha-
nisms of EDHF are discussed in greater detail below.

Mechanism 1: Arachidonic Acid Metabolites
Arachidonic Acid Metabolism through the Ep-

oxygenase Pathway. During EDHF-mediated dilations,
endothelial Ca2� can increase to 400–700 nM.27,64,77,84,90

At a Ca2� concentration of 450 nM, 70% of the phospho-
lipase A2 (PLA2) is translocated from the cytoplasm to
cellular membranes.95 PLA2 is a lipase that hydrolyzes
the linkage at the 2 position of the glycerophosphate
backbone of membrane phospholipids. The major prod-
uct of the hydrolysis is arachidonic acid. Because PLA2 is
constitutively active, the translocation to the membrane
places it in contact with the phospholipid substrate and
promotes the release of arachidonic acid within the cell.
A role for PLA2 involvement with the EDHF mechanism
has been demonstrated by studies using pharmacologic
inhibitors.26,84,96,97

The liberated arachidonic acid has several possible
fates. It can be reincorporated into the membrane phos-
pholipids; it can act as a messenger; or it can be metab-
olized further by COX, epoxygenase, lipoxygenase, or �
hydroxylase (fig. 4).

The first mechanism proposed for EDHF dilations in-
volves the metabolism of arachidonic acid through the
epoxygenase pathway to form epoxyeicosatrienoic ac-
ids. In this model (fig. 5), activation of the endothelial
receptor increases cytoplasmic free Ca2�. The increase
in Ca2� in turn elicits the translocation of PLA2 to the
membrane and the subsequent liberation of arachidonic
acid from the membrane phospholipids. Arachidonic
acid is metabolized by epoxygenase, an enzyme with a
cytochrome P-450 moiety, to EETs. The EETs diffuse
from the endothelium to the vascular smooth muscle,
where they activate a large conductance calcium-acti-
vated K channel (BKCa). Opening of the BKCa channel
results in K� efflux from the smooth muscle cell, hyper-
polarization, and dilation as described previously.

The idea that EETs are EDHF is based on several ob-
servations. (1) Selective inhibition of cytochrome P-450

Fig. 3. Simultaneous measurement of middle cerebral artery
diameter and endothelial Ca2� with the addition of uridine
triphosphate (UTP), an agonist for P2Y2 receptors, in a control
artery (A) and after inhibition of nitric oxide synthase and
cyclooxygenase with NG-nitro-L-arginine methylester (L-NAME)
and indomethacin (indo) (B).

Fig. 4. Pathways of arachidonic acid metabolism. PGI2 � pros-
tacyclin, PGs � prostaglandins.
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epoxygenases by pharmacologic means and by antisense
oligonucleotides blocked EDHF dilations.98,98–102 (2) An
antagonistic EETs analog blocked EDHF-mediated dila-
tions.103 (3) EETs are produced by endotheli-
um.101,102,104,105 (4) EETs and their metabolites dilate
vessels by increasing the open state probability of BKCa

channels and hyperpolarizing vascular smooth mus-
cle.102,105 (5) EDHF-mediated dilations are enhanced by
agents that increase expression of cytochrome P-450 ep-
oxygenase.101,106 (6) Endothelium releases a transferable
factor similar to P-450 epoxygenase products.21,106,107

A role for EETs as EDHF comes mostly from coronary
and renal arteries,36,100,102,108,109 although EDHF dila-
tions in other vessels including skeletal muscle seem to
involve a similar pathway.98,100 In hepatic, cerebral, and
mesenteric arteries, an involvement of this pathway
could not be demonstrated using pharmacologic inhibi-
tors of P-450 epoxygenase.110–112

However, these latter studies using P-450 epoxygenase
inhibitors do not necessarily exclude a potential role for
previously synthesized and stored EETs. EETs may be
stored in the phospholipid pool in the 2 position of the
glycerophosphate backbone, the same location as stored
arachidonic acid.113–117 EETs could be liberated by the
direct action of PLA2 without the immediate need for
P-450 epoxygenase. Therefore, the P-450 epoxygenase
inhibitors would not be effective in inhibiting EDHF-
mediated dilations until all stored EETs had been
depleted.118

If the EETs hypothesis (fig. 5) is valid, iberiotoxin, a
specific inhibitor of BKCa (table 1), should block EDHF-
mediated dilations. Iberiotoxin alone does inhibit EDHF
dilations in coronary arteries21,119 supporting the idea
that EETs serve as an EDHF. However, iberiotoxin is not
an effective inhibitor of EDHF in hepatic, cerebral, and
mesenteric arteries.110–112,120 Therefore, for these latter
arteries, EETs do not seem to be an EDHF.

An alternative to the above idea involves EETs as key
messengers, modulators, or amplifiers in the EDHF
mechanism without being the actual EDHF, i.e., a factor
that diffuses from the endothelium to hyperpolarize vas-
cular smooth muscle.121 Metabolites of the cytochrome
P-450 epoxygenase may regulate Ca2� entry into endo-
thelial cells,82,122–124 activate KCa channels on endothe-
lium,125,126 and regulate gap junctions.127 As discussed
previously, regulation of Ca2� in endothelium is a critical
step in EDHF dilations. Activation of endothelial potas-
sium channels and conduction through gap junctions are
important steps in other models of EDHF (discussed
below).

In summary, it is reasonable to consider that EDHF is a
metabolite of arachidonic acid produced by the P-450
epoxygenase pathway in coronary, renal, and possibly
skeletal muscle vascular beds. Alternatively, P-450 ep-
oxygenase metabolites may serve as messengers or mod-
ulators in the EDHF pathway, but EETs per se do not
seem to be the EDHF. However, it must be emphasized
that species differences, conditions (physiologic, patho-
logic, or both), methods for studying the isolated vessels,
and even diet could have major impacts on the EDHF
mechanism and the involvement of EETs.128

Arachidonic Acid Metabolism through the Li-
poxygenase Pathway. In addition to the epoxygenase
pathway, metabolism of arachidonic acid through the
lipoxygenase pathway may also be involved with EDHF
dilations. Several metabolites of arachidonic acid
through the lipoxygenase pathway dilate arteries
through activation of potassium channels.129–131 At least
one of these metabolites seems to be associated with
EDHF dilations to acetylcholine in the rabbit aorta.132

Mechanism 2: Potassium (K�). Vascular smooth
muscle contains many types of potassium channels. One
type commonly found in the membranes of smooth
muscle is the inwardly rectifying potassium channel (Kir;

Fig. 5. Diagram of two putative mecha-
nisms for endothelium-derived hyperpo-
larizing factor, epoxyeicosatrienoic acids
(EETs) and K�. AA � arachidonic acid;
ATPase � adenosine triphosphatase;
KCa � Ca-activated potassium channel;
Kir � inwardly rectifying potassium
channel; P450 Epox � cytochrome P-450
epoxygenase; PL � membrane phospho-
lipids; PLA2 � phospholipase A2.
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table 1). Kirs are responsive to increases in extracellular
K�. When extracellular K� increases from approxi-
mately 4 mM during rest to approximately 8 mM, Kirs
become activated.133–137 Although the name of this po-
tassium channel can be misleading, K� ions move in the
same direction through the Kir as with other potassium
channels. Thus, under physiologic conditions, the elec-
trochemical gradient favors K� movement out of the
smooth muscle cell. The loss of positively charged K�

results in hyperpolarization and subsequent dilation of
the artery. At extracellular K� of 20–30 mM, the depo-
larizing effect of K� begins to offset any hyperpolarizing
effects of Kir activation.

A second method whereby extracellular K� can hyper-
polarize vascular smooth muscle is by activation of Na/K
adenosine triphosphatase (ATPase). At the expense of
ATP, this enzyme exchanges three intracellular Na�s for
two extracellular K�s. This net loss of a positive charge
from the cell results in hyperpolarization. Na/K ATPase
is activated by a number of mechanisms, one of which is
an increase in extracellular K�. Not all isoforms of Na/K
ATPase can hyperpolarize vascular smooth muscle dur-
ing physiologic conditions. One type of Na/K ATPase is
fully activated at basal extracellular K� concentrations
(approximately 4 mM). Therefore, any increase in extra-
cellular K� could not further stimulate this isoform to
hyperpolarize the vascular smooth muscle. However,
two isoforms of Na/K ATPase that have a lower affinity
for K� can be activated when K� increases above basal
concentrations.138,139 Dilations produced by increasing
K� above basal concentrations require that the lower
affinity Na/K ATPase isoforms are present.139,140

The model for K� as an EDHF is based on studies by
Edwards et al.141 (fig. 5). In this model, activation of
endothelial receptors opens small and intermediate con-
ductance calcium-activated potassium channels (SKCa

and IKCa) on endothelium by increasing cytoplasmic
Ca2�. Intracellular K� moves down its electrochemical
gradient through the open channels to the extracellular
space. As a result of the ion movement, K� increases
from approximately 4 mM to approximately 12 mM in the
extracellular space located between endothelium and
vascular smooth muscle. The increase in extracellular
K� activates both the Kir (table 1) and Na/K ATPase in
the membrane of the vascular smooth muscle (fig. 5),
resulting in hyperpolarization of the smooth muscle.
Movement of K� to the extracellular space from the
smooth muscle through the Kir also helps to sustain
increased extracellular K� concentrations. The hyperpo-
larization of the vascular smooth muscle by Kir and Na/K
ATPase elicits dilation as described previously.

One major difference between the EETs model and the
K� model for EDHF involves the cellular location of KCa

channels. The KCas in the EETs model are located on the
vascular smooth muscle, whereas the KCas are located
on the endothelium for the K� model. Several studies

have demonstrated that the IKCa and SKCa involved with
EDHF dilations are located on the endothelium and that
the hyperpolarization of the endothelium by activation
of these channels is necessary for agonist-induced EDHF
dilations.27,141–145 Although the hyperpolarization of the
endothelium by IKCa and SKCa is consistent with the K�

model, it is also consistent with models involving gap
junctions (see “Mechanism 3: Gap Junctions”) and is not
necessarily inconsistent with the EETs model.

Inhibition of both Kir and Na/K ATPase with Ba2�

(table 1) and ouabain, respectively, blocked EDHF dila-
tions in rat hepatic arteries in addition to blocking the
related hyperpolarization of smooth muscle.141 Similarly,
the same combination of Ba2� and ouabain blocked
K�-induced hyperpolarizations and dilations when extra-
cellular K� was increased from 5 to 10 mM. Thus, K�

mimicked EDHF.
K�, measured in or near the myoendothelial space,

increased from approximately 5 mM to 11 mM on the
addition of acetylcholine.141 A combination of charybdo-
toxin and apamin (table 1) blocked the hyperpolariza-
tion of the endothelium produced by acetylcholine and
blocked the increase in K� in the myoendothelial
space.141 The above data reported by Edwards et al.141

and a number of subsequent studies provide evidence in
support of the model shown in figure 5.

Other studies have disputed the finding that K� serves
as an EDHF.45,146–152 The conclusion of the above stud-
ies was based on the inability of Ba2� and ouabain to
inhibit EDHF dilations and the fact that increasing extra-
cellular K� did not mimic EDHF dilations.

In summary, there is good evidence in the literature
supporting the idea that K� is an EDHF in some arteries.
However, there are other studies that oppose the K�

hypothesis. It must be noted that all of the above studies
were conducted in ex vivo vessels. Seemingly subtle
differences in experimental conditions could alter the
mechanism of the dilation and thus account for the
differences between investigators.153,154 Further studies
are required to determine the role of K� as an EDHF
in vivo.

Mechanism 3: Gap Junctions. Gap junctions are
intercellular channels that allow passage of small water-
soluble molecules (� 1,000 Da) including cyclic adeno-
sine monophosphate, cyclic guanosine monophosphate,
inositol triphosphates, and inorganic ions but do not
allow proteins to pass from cell to cell. There is some
selectivity for cations over anions.16,155,156 Gap junc-
tions consist of connexins, which are protein subunits
with four transmembrane-spanning domains (fig. 6A).
Six connexin subunits are required to form a connexon
or hemichannel. Two adjacent cells each provide a
hemichannel, and the hemichannels dock to form a
complete gap junction. More than a dozen connexins
have been identified, of which connexins 37, 40, 43, and
45 have been identified in vessels.157,158 Gap junctions
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can be regulated by Ca2�, voltage, pH, phosphorylation,
ATP, or EETs.127,159–162

Although it has been known that gap junctions exist
between endothelial cells and between vascular smooth
muscle cells, they also seem to exist between endothe-
lium and vascular smooth muscle (myoendothelial gap
junctions).163 Functional or indirect evidence, including
electrical conductivity and transfer of dye between adja-
cent cells, supports the existence of myoendothelial gap
junctions.158,164,165 These myoendothelial gap junctions
are thought to have a major role in the EDHF response
by relaying the dilator signal from the endothelium to
the vascular smooth muscle.

The study of gap junctions has been hampered in the
past by a lack of specific inhibitors.16,166,167 Recently,
peptide inhibitors, which seem to have greater selectiv-
ity for gap junctions, have been used in the study of
EDHF.167 The peptide inhibitors, termed gap peptides,
consist of amino acid sequences identical to portions of
extracellular loops of the connexin proteins. It is
thought that these gap peptides interfere with docking
of hemichannels between adjacent cells. One gap pep-
tide (11 amino acids), based on the extracellular loop of
connexins 37 and 43, blocked dye transfer in cultured
cells.168,169 The same gap peptide inhibited EDHF-medi-
ated dilations in isolated superior mesenteric artery and
aorta of the rabbit and cerebral pial arterioles in
vivo.66,167 In the cerebral pial arterioles, antisense oligo-
nucleotides directed against connexin 43 blocked the
EDHF-like dilation.66 The antisense study amplified the con-
clusion involving gap junctions and confirmed the effi-
cacy of the gap peptide. The connexin composition of
the gap junctions involved with EDHF dilations varies
among arteries. Connexin 37, 40, and 43 have been
identified as the protein building blocks of gap junctions
important in EDHF dilations.66,167,168,170 Therefore, it
seems that there is heterogeneity of gap junction types
involved with the EDHF mechanism in different arteries.

Sandow et al.171 conducted an elegant study compar-
ing arteries that did and did not have an EDHF-mediated
dilation. The rat mesenteric artery, which has EDHF-
mediated dilations, contains anatomically identified

myoendothelial gap junctions and tight electrical cou-
pling between endothelial and vascular smooth muscle
cells. On the other hand, the rat femoral artery, which
does not have an EDHF dilation, contained no myoendo-
thelial gap junctions and showed no electrical coupling
between endothelial and smooth muscle cells. The data
from the different arteries provides further evidence for
a role of myoendothelial gap junctions in EDHF dilations.

The gap peptides have served as major tools in studies
where a role for myoendothelial gap junctions in EDHF
dilations has been implicated. However, the gap pep-
tides have two limitations. First, evidence is beginning to
emerge that unpaired connexons or hemichannels can
function as cellular pores, in addition to acting as half of
a gap junction. The gap peptides used for blocking gap
junctions also seem to block the function of a hemichan-
nel pore.172 Therefore, if a single hemichannel is a func-
tional pore and can be inhibited by the gap peptides, it
is possible that the hemichannel, not the gap junction, is
the structure involved with EDHF dilations. Further stud-
ies are required to determine the role of hemichannels in
cellular regulation and EDHF-mediated dilations. Second,
the gap peptides do not selectively block only those gap
junctions between endothelium and vascular smooth
muscle. The inhibitors also block the gap junctions
between endothelial cells and those between smooth
muscle cells. Without selectivity of the peptide, an ab-
solute requirement for myoendothelial gap junctions is
questioned.12,173

Although there is evidence for gap junction involve-
ment in many vessel types, a question remains as to what
is conducted through the gap junctions for the endothe-
lium to pass the appropriate signal to the smooth mus-
cle. One possibility is that the gap junctions conduct the
EDHF from endothelium to smooth muscle (fig. 6B).
Another possible role for gap junctions is not the passage
of EDHF per se but the passage of electrical current in
the form of ions. Electrophysiologic studies in arteries
from guinea pigs, rats, and humans demonstrated that
EDHF involves electrical spread of hyperpolarization
from the endothelial cells to the smooth muscle
cells.45,174 One possibility is that K� carries the current

Fig. 6. (A) Diagram of a gap junction be-
tween an endothelial and a vascular
smooth muscle cell. (B) Mechanisms of
gap junction involvement in endothelium-
derived hyperpolarizing factor (EDHF)
dilations. KCa � Ca-activated potassium
channel.
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as shown in figure 6B. That is, potassium movement
from the vascular smooth muscle to the endothelium via
gap junctions would result in smooth muscle hyperpo-
larization. Figure 6B shows two possible scenarios
where myoendothelial gap junctions could be involved
with EDHF dilations. Movement of K� out of the vascu-
lar smooth muscle through gap junctions to the endo-
thelium and ultimately to the extracellular space would
produce a net hyperpolarization of the vascular smooth
muscle. The second scenario would be for the EDHF to
move from the endothelium to the vascular smooth
muscle by way of the myoendothelial gap junctions.

Mechanism 4: Hydrogen Peroxide. Hydrogen per-
oxide (H2O2) dilates a number of arteries and arterioles
by hyperpolarizing the vascular smooth muscle through
activation of KCa or sometimes KATP.19,47,175–183 H2O2

has been reported to be an EDHF in a number of arter-
ies.19,47,175–177 One hypothesis is that superoxide is gen-
erated on activation of endothelial nitric oxide. The
superoxide is converted to H2O2 by the actions of su-
peroxide dismutase.176 The newly generated H2O2 dif-
fuses to the vascular smooth muscle, where it activates
KCa or KATP, hyperpolarizes the vascular smooth muscle,
and elicits dilation.19,175

Hydrogen peroxide can also be produced by the action
of superoxide dismutase on superoxide generated from
COX, lipoxygenase, epoxygenase, xanthine oxidase,
NADPH oxidase, and sites along the mitochondrial respi-
ratory chain.19,176,184,185

The idea that H2O2 is an EDHF is based on the facts
that (1) catalase, an enzyme that catalyzes the decompo-
sition of H2O2 to H2O and O2, attenuates EDHF dilations;
(2) H2O2 and EDHF dilate by a similar mechanism; and
(3) H2O2 production is increased with the EDHF
response.19,175–177,185

However, just as there is evidence for H2O2 in the
mechanism of EHDF, there is also evidence against H2O2.
A number of studies have not found catalase to effec-
tively inhibit EHDF dilations.46,186–188 Furthermore, dila-
tions elicited by H2O2 do not always mimic EDHF
dilations.189

Pathologic Significance
After many pathologic conditions, dilation produced

by endothelium-derived nitric oxide can be significantly
attenuated. The primary reasons for the attenuated dila-
tions include an excessive production of reactive oxygen
species, which inactivate nitric oxide, and/or dysfunc-
tion in eNOS generation of nitric oxide.190–195 In con-
trast, EDHF seems to be resistant to reactive oxygen
species.196 In fact, EDHF has been reported to be up-
regulated after a variety of pathologic conditions when
nitric oxide-mediated dilations have been attenuated.
The up-regulation seems to occur after ischemia–reper-
fusion, traumatic injury, congestive heart failure, coro-
nary artery disease, hypercholesterolemia, and angio-

plasty.13,19,81,90,197–202 Of note, patients with congestive
heart failure showed an up-regulated EDHF-like dilation
in the forearm circulation after administration of acetyl-
choline.58,203 In a rat model of hyperthyroidism, EDHF
was up-regulated 36 h after triiodothyronine treatment
in renal arteries, but it was down-regulated after 8
weeks.204 Figure 7 shows dilations of branches of middle
cerebral arteries taken from rats 1 day after a mild head
injury or after sham injury.197 The dilations were elicited
by the P2Y2 receptor agonist ATP. In sham-injured rats,
inhibition of NOS (NG-nitro-L-arginine methylester) and
COX (indomethacin) shifted the response to ATP 10-fold
to the right (fig. 7A). The dilation after NOS and COX
was mediated by EDHF.24,197 In arteries from injured
rats, inhibition of NOS and COX had no effect on the
dilation (fig. 7B). Figure 7C shows the up-regulation of
the EDHF response by a direct comparison in the two
groups.

During hypertension, EDHF has been reported to be
either enhanced or suppressed.205–211 Pulmonary hyper-
tension in sheep enhanced EDHF in the pulmonary ar-
tery.212 Other conditions where EDHF has been re-
ported to be suppressed include aging29,205,210,213 and
type I diabetes.214–219 EDHF has been reported to be
either enhanced or suppressed in animal models of type
II diabetes.220,221

The effect of the pathologic condition on the EDHF
response could be a result of multiple factors. In some
pathologic conditions, the metabolic pathways that reg-
ulate EDHF could be compromised (producing down-
regulation), whereas in other cases, up-regulation of
EDHF could be a response to the pathologic condi-
tions.222 In addition, the effect of the pathologic condi-

Fig. 7. Dilations in third-order branches of the rat middle cere-
bral artery from control (sham-injured) (A) and head-injured
rats (B). (C) A direct comparison of endothelium-derived hyper-
polarizing factor dilations from branches of the rat middle
cerebral artery from control and head-injured rats. A controlled
cortical impact model was used for the injury.197 Endothelium-
dependent dilations were elicited by adenosine triphosphate
(ATP), an agonist for P2Y2 receptors. NG-nitro-L-arginine meth-
ylester (L-NAME) and indomethacin are inhibitors of nitric ox-
ide synthase and cyclooxygenase, respectively.
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tion on the EDHF dilation could be related to the vessel
size, the vascular bed being studied, or the severity and
duration of the pathologic condition.

Although EDHF dilations are up-regulated in both large
and small arteries in certain pathologic conditions, there
seems to be a greater propensity for up-regulation in
smaller vessels. EDHF responses in eNOS null mice sup-
port this idea. Larger conduit arteries typically showed
no up-regulation of EDHF in eNOS null mice, whereas
up-regulation of EDHF did occur in smaller “resistance-
sized” arteries and arterioles.223–228

In those pathologic conditions where EDHF is up-
regulated, it is thought to be a protective mechanism
that compensates for insufficient endothelium-derived
nitric oxide. A number of studies suggest that there is
a balance in the nitric oxide and EDHF re-
sponse.197,199,200,229–231 When the nitric oxide–medi-
ated dilation is impaired during pathologic conditions,
EDHF is up-regulated sufficiently to maintain near-nor-
mal dilation (fig. 8). Thus, the relative contributions of
nitric oxide and EDHF to the overall dilation are adjusted
accordingly for the response to remain relatively un-
changed. An example during traumatic brain injury is
shown in figure 7.

In disease states, activated eNOS can generate super-
oxide anions after depletion of tetrahydrobiopterin or
L-arginine.19,176,190 In the presence of superoxide dis-
mutase, the superoxide anions are converted to H2O2, a

putative EDHF (see “Mechanism 4: Hydrogen Perox-
ide”). This scenario represents one of many ways that
the contribution of endothelium-derived H2O2 could be
increased in disease states.19,190

Interaction with Anesthetics
There is good agreement in the literature that anesthet-

ics in general suppress EDHF dilations (tables 2 and 3).
For the inhalation anesthetics, isoflurane and sevoflurane
are more potent inhibitors than desflurane, enflurane, or
halothane on a molar basis.232 Ketamine, propofol, and
all barbiturates, with the exception of phenobarbital,
inhibited the EDHF dilations (tables 2 and 3). Etomidate
(1 �M) enhanced EDHF dilations in arteries but sup-
pressed it at greater concentrations.39,48,233 Further evi-
dence showed that isoflurane (1.4%) suppressed the
EDHF dilation when compared with either halothane
(1.2%) or ketamine in rat cremaster arterioles (150 mg/kg
followed by an infusion of 1.5 mg · kg�1 · min�1).53

Lischke et al.232,234 demonstrated that all volatile an-
esthetics studied, etomidate, thiopental, and methohexi-
tal, but not phenobarbital, inhibited cytochrome P-450
activity in rabbit liver microsomes. The authors sug-
gested that anesthetics inhibit the cytochrome P-450
epoxygenase, the enzyme family responsible for metab-
olizing arachidonic acid to EETs.232,234 However, as the
authors pointed out, the cytochrome P-450 in the liver
microsomes is likely different from the cytochrome
P-450 epoxygenase that synthesizes EETs.234

Anesthetics in general seem to inhibit EDHF dilations.
One possible mechanism for blocking EDHF could be
through inhibition of cytochrome P-450 epoxygenase, a
putative “EDHF synthase.” Although inhalation anesthet-
ics could block EDHF dilations by their ability to block
gap junction communication,235,236 the concentration
required to block gap junctions is above clinically rele-
vant halothane concentrations.232,237 In arteries where
P-450 epoxygenase does not seem to be involved with
EDHF dilations, a mechanism of inhibition by anesthetics
is lacking. Although anesthetics seem to inhibit EDHF
dilations, they do not abolish them. Therefore, there is

Fig. 8. Relative contributions of nitric oxide (NO) and endothe-
lium-derived hyperpolarizing factor (EDHF) to the overall dila-
tions during normal and pathologic conditions. When the nitric
oxide component of a dilation is attenuated during pathologic
conditions, EDHF can be up-regulated to maintain a near-nor-
mal dilation.

Table 2. Effects of Volatile Anesthetics on EDHF Dilations

Anesthetic Concentration, % MAC Vessel or Tissue EDHF Dilation Reference

Halothane 2 1.4% for rabbit259

1% for rat260
Rabbit carotid artery 36% inhibition Lischke et al.,232 1995

1–3 Rat mesenteric artery 54–86% inhibition Iranami et al.,261 1997
Isoflurane 2 2% for rabbit259 Rabbit carotid artery 32% inhibition Lischke et al.,232 1995

2 Rabbit small mesenteric artery 55% inhibition Akata et al.,262 1995
2 1.1% for rat260 Isolated perfused rat heart 61% inhibition Lischke et al.,233 1995

Sevoflurane 2 3.7% for rabbit263 Rabbit carotid artery 27% inhibition Lischke et al.,232 1995
3.7 Rabbit small mesenteric artery 27% inhibition Akata et al.,262 1995

Desflurane 8 8.9% for rabbit264 Rabbit carotid artery 34% inhibition Lischke et al.,232 1995
Enflurane 2 2.8% for rabbit259 Rabbit carotid artery 24% inhibition Lischke et al.,232 1995

2.8 Rabbit small mesenteric artery 37% inhibition Akata et al.,262 1995

EDHF � endothelium-derived hyperpolarizing factor.
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the potential to augment or further inhibit EDHF dila-
tions as necessary in the operating room (see “Clinical
Implications”). More studies are needed to determine
how anesthetics affect EDHF dilations and what this
inhibition would mean to the clinical practice of
anesthesiology.

Clinical Implications
Anesthesiologists and intensivists have to deal with

two problems involving the cardiovascular system. First,
blood pressure must to be maintained for perfusion of
vascular beds. Second, anesthesiologists and intensivists
must ensure that adequate blood flow to vital organs is
maintained. Compared with other organs of the body,
the brain, heart, and kidney are relatively more sensitive
to interruptions in the blood supply. Although the study
of EDHF is relatively new and is not currently a clinical
consideration, manipulating it does have potential for
controlling both blood pressure and maintaining blood
flow to vital organs. As the future clinical potential is
considered for EDHF, parallels to its cousin, nitric oxide,
will provide some insight.

The nitric oxide–cyclic guanosine monophosphate
system is used clinically to control blood pressure and to
maintain blood perfusion to selected tissues, including
heart, brain, and lung.238–249 For example, inhaled nitric
oxide is effective in reversing conditions affecting the
pulmonary vasculature, including persistent pulmonary
hypertension of newborns, hypoxia-induced pulmonary
hypertension, and adult respiratory distress.239,250 In ad-
dition, nitric oxide has also been used in the treatment of
cerebral vasospasm by selectively applying nitric oxide
donors to the vasospastic artery.240

The potential does exist for EDHF to be used in similar
ways as nitric oxide to control blood pressure and to
maintain blood perfusion to vital organs. In fact, manipula-
tions of EDHF in conjunction with nitric oxide could prove
to be more effective during conditions where nitric oxide
therapy alone has been met with limited success.250,251

For controlling blood pressure, EDHF could be manip-
ulated to increase or decrease the pressure as required.
Enhancement of EDHF to globally dilate vessels would
act to decrease blood pressure. Conversely, global inhi-
bition of EDHF would constrict vessels and increase
blood pressure. Major contributors to the maintenance
of blood pressure are the small arteries and arterioles
(� 300 �m).252 Importantly, it is these vessels that seem
to have a more pronounced EDHF response, possibly at
the expense of endothelium-derived nitric oxide.24,28–32

Manipulation of the EDHF system could therefore pro-
vide as great or even greater control of blood pressure
than manipulation of the nitric oxide–cyclic guanosine
monophosphate system. For example, overexpression in
mice of SK3, the small conductance calcium-activated K
channel involved with EDHF, hyperpolarized both the
endothelium and vascular smooth muscle, dilated arter-
ies in vivo and in vitro, and decreased blood pres-
sure.253 Conversely, decreasing the expression of the
SK3 had the opposite effects: vessel constriction and
increased blood pressure.253 Manipulation of EDHF
could therefore be an important means to regulate sys-
temic blood pressure. It follows that a better understand-
ing of the mechanisms controlling EDHF is a necessary
step to reach the important endpoint of manipulating
EDHF therapeutically.23

Manipulation of EDHF could be used to maintain blood

Table 3. Effects of Intravenous Anesthetics on EDHF Dilations

Anesthetics Concentration Vessel or Tissue EDHF Dilation Reference

Barbituate anesthetics
Methohexital 0.03 and 0.3 mM Rabbit carotid artery 24 and 37% inhibition Lischke et al.,234 1995
Pentobarbital 75 mg/kg

intraperitoneally
Hamster skin muscle arterioles

in vivo
64% inhibition De Wit et al.,265 1999

1 and 2 mM Hamster femoral artery 34 and 50% inhibition De Wit et al.,265 1999
Phenobarbital 0.1 and 0.3 mM Rabbit carotid artery No effect Lischke et al.,234 1995

0.1 mM Isolated perfused rat heart No effect Lischke et al.,233 1995
Thiopental 0.3 mM Human renal artery 38% inhibition Kessler et al.,39 1996

0.03 and 0.1 mM Isolated perfused rat heart 32 and 43% inhibition Lischke et al.,233 1995
0.1 and 0.3 mM Rabbit carotid artery 60 and 87% inhibition Lischke et al.,234 1995

Other intravenous
anesthetics

Etomidate 0.3 mM Human renal artery 38% inhibition Kessler et al.,39 1996
0.03 and 0.1 mM Isolated perfused rat heart 33 and 63% inhibition Lischke et al.,233 1995
10�6 M Human omental artery 26% enhancement

Increased EC50 2.4-
fold

Bodelsson et al.,48 2000

10�4 M Human omental artery
Propofol 3 �M to 0.1 mM Isolated canine pulmonary

artery
Increased EC50 3-fold
9% inhibition of

maximum dilation

Horibe et al.,266 2000

EC50 � effective concentration for one half of the maximal response; EDHF � endothelium-derived hyperpolarizing factor.
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flow to vital organs after compromise of the vascular
system. There are two considerations regarding EDHF
that are relevant. First, as stated previously, the smaller
resistance-sized arteries and arterioles have a more pro-
nounced EDHF response.24,28–32 It is these smaller ves-
sels where the major resistance to blood flow occurs and
is thus the major control point of blood flow. Manipula-
tion of these smaller sized vessels through EDHF could
be an effective and efficient means to control blood flow
in a vascular bed. Second, the mechanism for EDHF
seems to be different in different vascular beds. This fact
could be exploited to stimulate EDHF, vessel dilation,
and blood flow to a selective organ without affecting
resistance in the vascular beds of other organs. For
example, pharmacologic agents could possibly stimulate
the EDHF pathway in cerebral arteries and arterioles to
selectively reduce the cerebrovascular resistance with-
out altering the resistance in other vascular beds. Be-
cause global resistance would be minimally affected,
cerebral perfusion would increase with no or very little
change in blood pressure. Another example would be to
selectively activate EDHF in the kidney to increase blood
flow and restore urine output in a patient whose renal
blood flow has been decreased to critical rates. Again, the
selectivity of the dilation compared with a global dilation
would ensure that kidney vascular resistance would be
decreased without affecting the overall vascular resistance.

Interestingly, the anesthesiologist may already be ma-
nipulating EDHF during cardiac bypass when using pul-
satile flow. Pulsatile flow decreases vascular resistance
by enhancing the release of nitric oxide through me-
chanical deformation of endothelial cells.254–257 Pulsatile
flow also elicits EDHF dilations.21,258 Perhaps enhanced
EDHF dilations work in conjunction with endothelium-
derived nitric oxide to improve tissue perfusion with
pulsatile flow. During hypoxia, when dilations by endo-
thelium-dependent nitric oxide are inhibited, EDHF,
which is not affected by hypoxia,22 may contribute more
to the decreased vascular resistance than nitric oxide
during bypass with pulsatile flow.

Often, it is very sick patients who come to the oper-
ating room or intensive care unit. As stated earlier,
pathologic conditions often affect EDHF to either sup-
press or enhance the response. With knowledge of the
mechanism of EDHF and how the EDHF response is
affected by a particular condition, EDHF could be ex-
ploited in a beneficial way to provide a combination of
desirable pressure maintenance and adequate flow to
vital organs in individual disease states.

Summary

There is overwhelming evidence that an endothelial
mechanism, other than nitric oxide or prostacyclin, ex-
ists for dilating arteries and arterioles. The third pathway

is characterized by hyperpolarization of the vascular
smooth muscle and involvement of potassium channels,
most often small and intermediate conductance calcium-
activated potassium channels (IKCa and SKCa). EDHF is
more prevalent in smaller resistance-sized arteries and
arterioles than in larger conduit arteries. Because these
resistance-sized vessels are more significant in the regu-
lation of blood flow, EDHF may have a major but rela-
tively unrecognized role in the control of flow during
normal physiologic conditions. During some pathologic
states, EDHF can be up-regulated. This up-regulation
often occurs as the dilator effects of endothelium-de-
rived nitric oxide are suppressed. The up-regulated
EDHF may serve in a protective capacity to help main-
tain blood flow to organs and tissues during these stress-
ful states.

The most controversial aspect of EDHF research is the
mechanism. Arachidonic acid metabolism to EETs
through the epoxygenase pathway, K�, gap junctions,
and H2O2 are the most widely studied mechanisms,
although others do exist. There is evidence for and
against each of the above mechanisms. These principal
mechanisms are not necessarily mutually exclusive and
could possibly coexist. However, there are likely multi-
ple mechanisms for EDHF. In an individual vessel, the
mechanism for EDHF likely depends on the species,
organ, vessels size, diet, hormonal state, environmental
conditions, and presence or absence of a pathologic
condition. As a case in point, the P-450 epoxygenase
pathway can be readily altered as a result of the above
conditions.128

The discovery of a new endothelial-mediated dilatory
process is intriguing, but many questions must be an-
swered before the true therapeutic potential of EDHF
can be fully recognized. Currently, EDHF is almost ex-
clusively studied after inhibition of both nitric oxide and
the COX pathway. Only when the mechanism of EDHF-
mediated dilations is elucidated can it be studied in the
presence of nitric oxide and COX metabolites, and only
then can its relative importance in the control of blood
flow during normal physiologic conditions be deter-
mined. We as scientists are challenged to understand the
mechanism, role, and clinical implications of EDHF.
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