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Spinal Glucocorticoid Receptors Contribute to the
Development of Morphine Tolerance in Rats
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Background: Opioid analgesic tolerance is a pharmacologic
phenomenon involving the mechanisms of cellular adaptation.
Central glucocorticoid receptors (GRs) have been implicated in
the cellular mechanism of neuronal plasticity that has many
cellular steps in common with the mechanism of opioid toler-
ance. In a rat model of morphine tolerance, the authors exam-
ined the hypothesis that spinal GRs would play a significant
role in the development of tolerance to the antinociceptive
effect of morphine.

Methods: In experiment 1, each group of rats received the GR
antagonist RU38486 (0.5 or 1 �g), the mineralocorticoid recep-
tor antagonist spironolactone (3 �g), or a vehicle, given intra-
thecally with morphine (10 �g) twice daily for 6 days. In ex-
periment 2, four groups of rats were used, and each group
received intrathecally 10 �g morphine plus 5 �mol GR anti-
sense oligodeoxynucleotide, sense oligodeoxynucleotide,
mixed-base oligodeoxynucleotide, or vehicle. Western blotting
was used to examine the expression of GRs within the spinal
cord dorsal horn. In experiment 3, the GR agonist dexametha-
sone (4 �g) was given intrathecally twice daily in combination
with 10 �g morphine. For all experiments, the development of
morphine antinociceptive tolerance was assessed using the tail-
flick test.

Results: The development of tolerance to the antinociceptive
effect of morphine was substantially attenuated when the GR
antagonist RU38486 (1 > 0.5 �g > vehicle) but not spironolac-
tone was coadministered with morphine for 6 days. A single
treatment with RU38486 did not affect morphine antinocicep-
tion, nor did it reverse morphine tolerance on day 7. A similar
reduction of morphine tolerance was observed in those rats
treated with a GR antisense oligodeoxynucleotide but not a
sense or mixed-base oligodeoxynucleotide. The administration
of the GR antisense oligodeoxynucleotide also prevented GR
up-regulation within the spinal cord dorsal horn. Moreover, the
GR agonist dexamethasone facilitated the development of mor-
phine tolerance.

Conclusions: The results indicate an important role of spinal
GRs in the cellular mechanisms of morphine tolerance in rats
and may have significant implications in clinical opioid
therapy.

THE development of opioid analgesic tolerance hampers
the clinical use of opioids, a class of most effective
analgesics in treating many forms of acute and chronic
pain. Investigation into the mechanisms of opioid toler-
ance has been a focus of intense interest for many
years.1–5 Recent studies have implicated the activation of

N-methyl-D-aspartate (NMDA) receptors and protein ki-
nase C as well as regulation of glutamate transporters in
the mechanisms of opioid tolerance,6–11 suggesting a
possible link between neural plasticity and the cellular
mechanisms of opioid tolerance.

Endogenous glucocorticoid hormones such as cortisol
bind to peripheral glucocorticoid receptors (GRs),
which play a crucial role in the regulation of inflamma-
tory responses through both genomic and nongenomic
mechanisms. However, neuronal GRs have been located
within a number of central regions12,13 and implicated in
neuronal plastic changes induced by neuronal injury14

and the process of learning and memory.15–18 Our recent
study has indicated that the spinal cord dorsal horn is a
prominent site of neuronal GR expression that is en-
hanced after peripheral nerve injury.19 Of interest is that
activation of GRs may have a modulatory effect on mor-
phine-induce locomotor activity20 and the related do-
pamine-dependent responses.21,22 GRs may also have an
effect on morphine antinociception in rodents.23,24 To
date, the role of central GRs in the cellular mechanisms
of opioid tolerance has not been directly examined.

Given that central GRs are involved in the mechanism
of neuronal plasticity that has many cellular steps in
common with the mechanism of opioid tolerance, it is
possible that neuronal GRs may play a unique role in the
cellular mechanism of opioid tolerance. Using a rat model
of antinociceptive tolerance induced by repeated intrathe-
cal morphine administration, we examined the hypothesis
that spinal GRs would contribute to the development of
morphine tolerance. The results show that morphine tol-
erance was substantially attenuated through either inhibi-
tion of the GR activation with the GR antagonist RU38486
or prevention of morphine-induced GR up-regulation using
a GR antisense oligodeoxynucleotide.

Materials and Methods

Experimental Animals
Adult male Sprague-Dawley rats (Charles River Labora-

tories, Wilmington, MA) weighing 300–350 g were used.
Animals were housed in cages with water and food
pellets available ad libitum. The animal room was arti-
ficially illuminated from 7:00 to 19:00 h. The general
experimental protocol was approved through our Insti-
tutional Animal Care and Use Committee (Boston, MA).

Intrathecal Catheter Implantation and Drug
Delivery
An intrathecal catheter (PE-10) was implanted in each

rat according to the previously published method.25 An-
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imals that exhibited neurologic deficits such as paralysis
after the intrathecal catheter implantation were ex-
cluded from the experiments.9 Drugs were delivered via
an intrathecal catheter in a total volume of 10 �l fol-
lowed by a saline flush. Each drug was injected sepa-
rately via the intrathecal catheter during an injection
session. The following drugs were purchased from
Sigma (St. Louis, MO): mifepristone (RU38486), mor-
phine, spironolactone, and dexamethasone. Morphine
was dissolved in normal saline, and other drugs were
dissolved in a 10% ethanol solution (vehicle).

For those experiments using GR oligodeoxynucleoti-
des, the sequences for antisense, sense, and mixed-base
oligodeoxynucleotides were chosen based on a previous
study that has verified the down-regulation of GRs after
the administration with the antisense but not sense or
mixed-base oligodeoxynucleotide.26 Therefore, the se-
quences overlapping the respective initiation codon
(Gene Bank No. M14053) were used for targeting GR
mRNA: GR antisense (TGG AGT CCA TTG GCA AAT),
GR sense (ATT TGC CAA TGG ACT CCA), and the
mixed-base (TGA AGT TCA GTG TCA ACT), as described
in a previous study.26 Sequencing was performed by
MWG-Biotech (High Point, NC), and the product stability
was ensured at the time of delivery. Oligodeoxynucle-
otides were dissolved in 0.9% saline and injected intra-
thecally (5 �mol each) twice daily. After the last behav-
ioral testing, spinal cord tissue samples were taken to
examine changes in the GR protein concentration.

Induction of Morphine Tolerance and Statistical
Analysis
Tolerance to the antinociceptive effect of morphine

was induced using an intrathecal treatment regimen of
10 �g morphine given twice daily for 6 consecutive
days. Differences in morphine antinociception among
treatment groups were assessed using the tail-flick test
by testing at 30 min after a probe dose of 10 �g mor-
phine. The dose–response effect of morphine was ex-
amined by generating cumulative dose–response curves
to reduce the total number of rats used, as described in
a previous study.27 The increment log doses (0.2 log
unit) of morphine were given to the same rats, and the
morphine antinociceptive effects were examined at 20
min after each morphine injection. This process was
repeated until either no additional antinociceptive effect
was demonstrated or the cutoff time (10 s) of the tail-
flick test was reached in response to a next higher dose,
indicative of the maximal antinociceptive effect of mor-
phine under the experimental condition.27 The routine
tail-flick test was used with baseline latencies of 4–5 s
and a cutoff time of 10 s. At least two trials were made
for each rat, with an intertrial interval of 1 min and with
changes of the tail position receiving radiant heat stim-
ulation at each trial.

The percent of maximal possible antinociceptive ef-

fect (%MPAE) was determined by comparing the tail-flick
latency before (baseline) and after a drug injection using
the equation: %MPAE � [(After Drug Injection � Base-
line)/(10 � Baseline)] � 100% (the constant 10 refers to
the cutoff time). The data were analyzed by using two-
way analysis of variance with post hoc Newman–Keuls
tests. For the dose–response data analysis, AD50 values
and 95% confidence intervals were generated using a
computerized regression model.

Western Blotting
For Western blot, rats were rapidly (� 1 min) killed

through decapitation after being anesthetized with pen-
tobarbital (100 mg/kg intraperitoneal). Lumbar spinal
cord segments (L3–L5) were removed through a lumbar
laminectomy. The spinal segments were divided into
dorsal and ventral horns and homogenized in sodium
dodecyl sulfate sample buffer containing a cocktail of
proteinase inhibitors (Sigma: 2 mM AEBSF, 1 mM EDTA,
130 �M bestatin, 14 �M E-64, 1 �M leupeptin, 0.3 �M

aprotinin). The lumbar segments were harvested be-
cause the intrathecal drug delivery was aimed at this site.
Protein samples were separated on sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis (4–15% gradi-
ent gel; Bio-Rad, Hercules, CA) and transferred to poly-
vinyl difluoride membranes (Millipore, Bedford, MA).
The membranes were blocked with 5% milk and incu-
bated overnight at 4°C with a primary antibody (GR:
1:1,000; rabbit polyclonal from Santa Cruz, Santa Cruz,
CA) and 1 h at room temperature with horseradish per-
oxidase–conjugated secondary antibody (1:7,000; Amer-
sham Biosciences, Arlington Heights, IL). The blots were
visualized in existing chemiluminescent solution (NEN,
Boston, MA) for 1 min and exposed to hyperfilms (Am-
ersham) for 1–10 min. The blots were then incubated in
a stripping buffer (67.5 mM Tris, pH 6.8, 2% sodium
dodecyl sulfate, and 0.7% �-mercaptoethanol) for 30 min
at 50°C and reprobed with a polyclonal rabbit anti–�-
actin antibody (1:20,000; Alpha Diagnostic International,
San Antonio, TX) as a loading control. The Western
analysis was made in triplicates. The band density was
measured with a computer-assisted imaging analysis sys-
tem and normalized against the corresponding loading
control. Differences were compared using analysis of
variance followed by post hoc Newman–Keuls tests.

Results

Effect of GR Antagonist RU38486
The role of GRs in the development of morphine

tolerance was examined in three groups of rats each
receiving the GR antagonist RU38486 (0.5 or 1 �g intra-
thecal) or a vehicle with morphine (10 �g intrathecal)
for 6 days (n � 5 or 6). The RU38486 doses were chosen
based on the literature28 and our pilot experiments.
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Antinociceptive tolerance developed in the morphine
plus vehicle group, whereas RU38486 significantly atten-
uated the development of morphine tolerance when
examined on days 5 and 7 (P � 0.05; fig. 1A). Consis-
tently, the rightward shift of the morphine dose–re-
sponse curve on day 7 in the morphine-plus-vehicle
group was prevented in the morphine-plus-RU38486
groups (fig. 1B and table 1). In contrast, intrathecal
coadministration of 10 �g morphine with the mineralo-
corticoid receptor antagonist spironolactone (3 �g) for
6 days did not prevent the development of morphine
tolerance (P � 0.05, n � 5; figs. 1A and B), nor did
spironolactone alone change baseline nociceptive
threshold, indicating a selective role of GRs in this pro-
cess. The selected spironolactone dose has been shown

to be effective for blocking the mineralocorticoid
receptor.22

Two additional groups of rats (n � 5) each received
RU38486 (1 �g intrathecal) or saline alone for 6 days.
Such treatment did not change the baseline tail-flick
latency, nor did the RU38486 treatment change the mo-
tor activity, indicating a specific effect of RU38486. The
effect of RU38486 on morphine tolerance was unlikely
due to a direct effect on morphine antinociception,
because a single dose of RU38486 (1 �g) did not reverse
morphine tolerance on day 7 in those rats made tolerant
to morphine (P � 0.05, n � 5; fig. 1C), nor did it change
the antinociception induced by a single morphine
(10 �g intrathecal) treatment in a separate group of rats
(%MPAE, morphine alone: 91 � 2.3%; morphine plus
RU38486: 89 � 3.1%). Therefore, the data indicate that
the GR antagonist RU38486 effectively attenuated the
development of morphine tolerance.

Effect of GR Antisense Oligodeoxynucleotide
In addition to using RU38486, we examined the func-

tional role of GRs in morphine tolerance by interfering
with the GR expression within the spinal cord dorsal
horn. Although there are reports on mice with geneti-
cally altered GRs, they are either lethal or unavail-
able.29–31 As an alternative, an antisense oligode-
oxynucleotide against GRs was given as described
previously.26 In this experiment, a total of four groups of
rats were used, and each group (n � 5–7) received 10 �g
morphine in combination with 5 �mol GR antisense
oligodeoxynucleotide, sense oligodeoxynucleotide,
mixed-base oligodeoxynucleotide, or vehicle. The oli-
godeoxynucleotide treatment (twice daily, intrathecal)
was first given alone for 7 days before the morphine
regimen. These rats then received the intrathecal mor-
phine treatment along with an oligodeoxynucleotide for
6 days. The spinal cord dorsal horn samples were col-
lected from these groups at the end of behavioral testing.

The intrathecal morphine regimen induced a substan-
tial up-regulation of GRs within the spinal cord dorsal
horn when examined on day 7, whereas the same mor-
phine treatment did not up-regulate GRs in the morphine–

Fig. 1. (A and B) The development of morphine tolerance was
prevented in rats treated with morphine (MS) and RU38486
(RU) but not spironolactone (SRL). Note the differences in the
onset of complete tolerance (A) and the rightward shift of
dose–response curves (B) among groups. * P < 0.05 and ** P <
0.01 as compared with baseline. (C) A single injection of 1 �g
RU38486 (intrathecal, 30 min AFTER) did not reverse tolerance
after a probe morphine dose (10 �g) on day 7 (BEFORE) in
those rats made tolerant to morphine (10 �g intrathecal) given
twice daily for 6 days. %MPAE � percent of maximal possible
antinociceptive effect.

Table 1. Effects of RU38486 on Morphine Tolerance

Group AD50 95% CI

MS–VEH (D1) 1.9 1.5–3.2
MS–VEH (D7) 6.3 4.9–6.8
MS–0.5 �g RU (D7) 2.3 1.0–3.7
MS–1 �g RU (D7) 1.5 1.0–2.7
MS–3 �g SPL (D7) 6.7 5.6–7.1

Only the baseline AD50 value on day 1 from the morphine-plus-vehicle group
is shown in the table because there were no significant differences in baseline
morphine dose–response among all groups.

AD50 � morphine antinociceptive dose with a 50% maximum possible an-
tinociceptive effect; CI � confidence interval; D1 � day 1 of the experimental
period; D7 � day 7 of the experimental period; MS � morphine; RU �
RU38486; SPL � spironolactone; VEH � vehicle.
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plus–antisense oligodeoxynucleotide group, as com-
pared with each of the groups receiving morphine plus
vehicle, a sense oligodeoxynucleotide, or mixed-based
oligodeoxynucleotide (P � 0.05; fig. 2A). No motor
changes such as paralysis were observed after oligode-
oxynucleotide treatment. Of note is that the RU38486
treatment that prevented the development of morphine
tolerance (see below) also reduced the GR up-regulation
induced by morphine administration (P � 0.05, n � 5;
fig. 2B), whereas RU38486 alone did not change the GR
expression as compared with the vehicle group (P �
0.05; fig. 2B). Consistent with the Western blot results,
the development of morphine tolerance was substan-
tially diminished in the morphine–plus–GR antisense
group as compared to each of the remaining groups (P �
0.05, n � 6; fig. 3). These results indicate that morphine
tolerance was significantly attenuated when the mor-
phine-induced GR up-regulation within the spinal cord
dorsal horn was diminished by the antisense oligode-
oxynucleotide treatment.

Effect of Dexamethasone
Coadministration of morphine (10 �g intrathecal) and

the GR agonist dexamethasone (4 �g intrathecal),23,32

given twice daily for 4 days, significantly shortened the
onset of morphine tolerance such that antinociceptive
tolerance to 10 �g morphine developed on day 5 of the
morphine cycle (%MPAE: 46.5 � 7.1%) as compared
with the morphine alone group (%MPAE: 79.2 � 2.3%)
(P � 0.05, n � 6; fig. 4). Dexamethasone alone did not
affect the baseline nociceptive threshold.

Discussion

The current findings demonstrate that (1) the develop-
ment of morphine antinociceptive tolerance was sub-
stantially attenuated by the GR antagonist RU38486, (2)
a single treatment with RU38486 did not affect mor-
phine antinociception, (3) a GR antisense oligode-
oxynucleotide but not a sense or mixed-base oligode-
oxynucleotide also attenuated the development of
morphine tolerance as well as the up-regulation of GRs
within the spinal cord dorsal horn, and (4) the GR
agonist dexamethasone significantly shortened the onset
of morphine tolerance. Collectively, these data indicate
that central GRs may play a significant role in the devel-
opment of morphine tolerance in rats.

Several technical considerations are worthwhile men-
tioning. First, although RU38486 (mifepristone, RU486)
has been extensively used as a conventional GR antago-
nist and is the only commercially available GR antago-
nist, it does have the antiprogesterone effect.28 The
antiprogesterone effect is unlikely to be involved in this
study because we only included male rats and the GR

Fig. 2. (A) Changes in glucocorticoid receptor (GR) protein
(Western blot) level within the spinal cord dorsal horn after
treatment (twice daily � 6 days) with either a vehicle or mor-
phine (10 �g intrathecal) and one of the following GR oligode-
oxynucleotides (5 �mol each, intrathecal): sense, antisense, or
mixed base. Lane assignment: Veh � vehicle alone; O � an
oligodeoxynucleotide alone; M/O � morphine plus an oligode-
oxynucleotide. * P < 0.05 as compared with the vehicle group.
(B) RU38486 (1 �g intrathecal) attenuated GR up-regulation
within the spinal cord dorsal horn induced by morphine (10 �g
intrathecal) administration. Both agents were given twice daily
for 6 days. * P < 0.05 as compared with the vehicle group. V �
vehicle; M � morphine; R � RU38486. In A and B, RD refers to
relative density (an average of triplicates) of each GR band as
normalized against the corresponding loading band.

Fig. 3. The development of morphine tolerance was prevented
in rats treated with morphine (MS) and the glucocorticoid re-
ceptor antisense oligodeoxynucleotide but not a sense or
mixed-base oligodeoxynucleotide. The cumulative dose–re-
sponse curves were generated on day 7. %MPAE � percent of
maximal possible antinociceptive effect; VEH � vehicle.

Fig. 4. The glucocorticoid receptor agonist dexamethasone
(DEX; 4 �g intrathecal), with coadministration of morphine
(MS; 10 �g intrathecal) given twice daily for 4 days, significantly
diminished morphine antinociception when examined on day
5. * P < 0.05 as compared with the morphine-plus-vehicle
group; � P < 0.05 as compared with morphine-alone and ve-
hicle groups. %MPAE � percent of maximal possible antinoci-
ceptive effect; VEH � vehicle.
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knockdown experiment using an antisense oligode-
oxynucleotide produced a result comparable to that
from using RU38486. Second, mineralocorticoid recep-
tors are unlikely to play a significant role in this process
because the mineralocorticoid receptor antagonist spi-
ronolactone within the dose range effective for blocking
the mineralocorticoid receptor22 did not influence the
development of morphine tolerance. Third, although the
current data indicate a spinal locus of GR actions be-
cause morphine and RU38486 or the GR antisense oli-
godeoxynucleotide were delivered using an intrathecal
treatment regimen, it does not exclude the possibility
that a similar GR-mediated mechanism of morphine tol-
erance may be involved in other central nervous system
regions.

Although GRs have been shown to act through non-
genomic mechanisms,33,34 the role of GRs in morphine
tolerance probably is not due to a direct interaction
between GRs and �-opioid receptors, because a single
injection with the GR antagonist RU38486 did not re-
verse the established morphine tolerance and the same
RU38486 treatment did not affect the morphine antino-
ciceptive effect in nontolerant rats. At the cellular level,
GRs are activated through the formation of a GR ho-
modimer after the dissociation from a cytosolic complex
consisting of heat shock proteins.35 A GR homodimer
binds to specific nuclear DNA–responsive elements to
activate gene transcription and translation for a variety of
cellular elements.35 Given that the development of mor-
phine tolerance was attenuated in this model after either
repeated administration of RU38496 or prevention of GR
up-regulation with an antisense oligodeoxynucleotide, it
is plausible that GRs may have a modulatory role in one
or more intracellular elements contributory to the cellu-
lar mechanisms of morphine tolerance.1–5,36

It may be considered that an interaction between GRs
and NMDA receptors might play a role in this process
because NMDA receptors have been known to contribute
to the cellular mechanism of neural plasticity related to
learning and memory as well as opioid tolerance.6–10,37–39

For example, GRs have a direct modulatory effect on the
NMDA receptor function40 and potentiate NMDA-induced
responses in dopamine-sensitive neurons in the ventral
tegmental area.41 In addition, a recent study suggested
the involvement of proinflammatory cytokines in opioid
tolerance,42 raising the possibility that the glucocorti-
coid effects may be mediated in part though the actions
of spinal cytokines. Future studies would examine these
possibilities.

The relation among stress, corticosteroids, and mor-
phine analgesia has been suggested in several previous
studies.43,44 For example, Takahashi et al.43 have dem-
onstrated that the antinociceptive effect of morphine
was potentiated by adrenalectomy in mice, suggesting
that endogenous corticosteroids might have a negative
effect on morphine antinociception. However, in the

same study, adrenalectomy seemed to be ineffective in
affecting the development of morphine tolerance in
mice, although that study did not specifically examine
the effect of GR activation. The current data support a
potential role of endogenous glucocorticoids in the
mechanisms of opioid tolerance via activation of neuro-
nal GRs, suggesting that those factors (e.g., stress, emo-
tional disturbance, Addison or Cushing disease) capable
of changing the endogenous corticosteroid level could
be linked to the cellular mechanism of opioid tolerance
through neuronal GRs. Our results also suggest that a GR
antagonist such as RU38486 could be a useful pharma-
cologic tool, alone or in combination with other agents
(e.g., an NMDA receptor antagonist), to prevent the
development of opioid tolerance, an issue of clinical
relevance.45,46
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