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Design of Experiments

Fundamentals of a Memory Experiment and
Two Manipulations
THE skeleton of the memory experiment should have

three phases: a study or acquisition phase, a retention
interval, and a test or retrieval phase. Testing acquisition
versus retrieval is a common experimental manipula-
tion. For example, subjects might be required to learn
one or more lists of words before drug administration
and then asked to recall the material during the period of
drug action (table 6). For most drugs, recall would not be
impaired, even if the subjects seem to be very drowsy
and sedated. In contrast, recall of word lists learned after
drug administration would be greatly reduced.

Another manipulation is to test for state-dependent
memory or to control its effects. The most common
design has been the 2 � 2 (table 7), in which subjects
learn material in either a drug or a placebo state and later
try to recall the information in either the same or the
opposite state.82 There would thus be four groups of
subjects assigned to the following treatment conditions
during acquisition and recall: drug–drug, drug–placebo,
placebo–drug, and placebo–placebo. Symmetrical state-
dependent memory would be demonstrated if the drug–
drug and placebo–placebo groups recalled better than
the drug–placebo and placebo–drug groups. Asymmet-
rical state-dependent memory would be demonstrated if
the drug–placebo group recalled less than the drug–
drug group. The subject is further complicated by the
sensitivity of state-dependent effects to the type of mem-
ory tasks used.117,118

The Definitive Standard
For drug studies, the definitive standard design is the

randomized, prospective, concurrent assignment of sub-
jects to the drug and placebo groups, under double-blind
conditions, in which neither the subjects nor the re-
searchers can determine which treatment is being used.
Unfortunately, there are circumstances in which this
strategy may not be feasible. It may not be possible to
“blind” patients to some treatments that have recogniz-
able effects, e.g., treatment with general anesthetics. It
may not be ethical to use a placebo group, e.g., in
surgical and invasive procedures that require a sham
procedure, or if there is a risk of exacerbation of illness.

Comparison Groups
Investigation of drug effects has one significant design

advantage over many studies of cognitive impairments:
the possible use of pretreatment and posttreatment
comparisons. Premorbid assessment is usually not avail-
able when impairment is caused by trauma or disease. In
studying the effects of drugs, however, it is possible to
compare the behavior of the subject, both before and
after administration of the drug, allowing unambiguous
attribution of behavioral changes to the influence of the
drug. A second fundamental design component is the
use of a nondrug (placebo) control sample in which
subjects receive identical treatment except for adminis-
tration of the drug. Both design elements are essential.
Pretreatment–posttreatment comparisons alone are inad-
equate because practice on experimental tasks, environ-
mental influences, fatigue, and a host of other factors can
change behavior over time and affect the comparison of
performance before and after drug administration. Com-
parison of treatment and control groups alone is also
inadequate unless it can be established that the groups
are equivalent before treatment. Otherwise, an observed
difference could have existed regardless of treatment or
a true difference could have been masked by different
baseline measurements between groups.

Inclusion of a placebo control group is particularly
important in assessing the influence of a drug on learn-
ing and performance. In several of our studies, we have
noted little or no difference in performance between
pretreatment and posttreatment with an active drug.95

These failures to find significant differences might be
incorrectly attributed to a lack of a treatment effect
except that the control group performance showed
marked improvement in the same task from pretreat-
ment to posttreatment. For example, figure 10 shows
performance in learning sequences of 15 digits. Placebo
subjects demonstrated an immediate improvement from
their first test to their second, with no further improve-
ment. For diazepam-treated subjects, the improvement
was delayed, with greater delays for higher doses. In
other words, the drug suppressed the usual performance
improvement that occurs with repeated practice,
thereby showing a reduction in new learning caused by
the drug. Thus, a placebo-controlled design is essential
to assess practice effects. Otherwise, drug effects may be
confounded with practice effects.

An “active” control group, e.g., a group treated with a
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Table 6. Experimental Design to Test for Acquisition versus
Retrieval Deficit

Presentation of the first set of lists
Drug or placebo administration
Delayed recall of the first set of lists
Presentation of the second set of lists
Retention interval
Delayed recall of the second set of lists
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benzodiazepine when investigating a new potential am-
nesic agent, may also be included in the design. This
would be advantageous when the sensitivity of the tests
used has not been established, as a safeguard against
false-negative results, and as a standard for comparison
with the new drug–induced effects.

Issues Related to Studies of the Long-term Effects of
Drug Abuse
Methodologic flaws are common in studies of the ef-

fects of drug abuse on cognition. The majority of the
studies have not included measures of premorbid cogni-
tive function, raising the possibility that differences be-
tween drug users and controls existed before the onset
of drug use, rather than being caused by drug use. Some
studies have not included a control group of nonusers.
To convincingly demonstrate cognitive deficits in drug
users, comparison with an appropriately matched con-
trol group is essential. Many studies have involved sam-
ple sizes too small to provide valid conclusions. These
methodologic flaws can be avoided by measuring pre-
morbid cognitive function, including a control group,
and using a large sample size. To control for the possi-
bility that drug abusers were poorer mentally and intel-
lectually before starting their abuse, Block et al.40 pio-
neered matching drug users and nonusers on their
previous scores during the fourth grade on the Iowa Test
of Basic Skills achievement tests.119 Another method-
ologic constraint in studies of recreational drug users is
the fact that most subjects use more than one drug. It is
therefore important when investigating one specific
drug to take a careful drug history and set strict maximal
limits on the frequency and quantity of use of other
drugs when recruiting subjects.

Pharmacologic Factors

Dose–Response Effects
One of the most elementary considerations in pharma-

cology is the relation between the size of the dose
administered and the size of the measured behavioral
response. However, the simple assumption that larger
doses result in greater effects than smaller doses may not
be true. For example, midrange doses of physostigmine
exert positive effects on memory performance, whereas
higher and lower doses impair it.120,121 Other “memory-
enhancing” drugs, such as epinephrine and other endog-

enous stress hormones, may also show similar “invert-
ed-U” dose–effect curves.122–125 This shape of the curve
has been variously explained as being due to the high
doses inducing hyperstimulation effects, producing state
dependency, or facilitating learning of other interfering
material.126 Other drugs may show a biphasic action on
behavior, with small doses improving and larger doses
impairing behavior.127

Effects of Repeated Administration
Tolerance. Tolerance has been defined as a shortened

duration and decreased intensity of drug effects after
repeated administration. Short-term tolerance to psycho-
active drugs may develop within the time course of a
single dose. Behavioral impairment may recover toward
baseline levels while the plasma concentrations of the
drug remain relatively high. This has been demonstrated
for many drugs, including barbiturates, benzodiazepines,
caffeine, and cocaine.128–130 The rapid distribution of a
drug in and out of the brain may produce the same
effects as short-term tolerance. Experiments with steady
state blood concentrations may be needed to distinguish
between distribution effects and short-term tolerance.

With repeated administration, long-term tolerance to the
behavioral effects of psychoactive drugs can develop.131,132

The opposite effect to tolerance has occasionally been
reported. Repeated administration of cocaine may produce
sensitization or heightened responses.133,134

Pharmacokinetic–Pharmacodynamic Relations
The relative ease of measuring a psychotropic drug

concentration in blood (or other body fluids) compared
with objective dynamic measurements of memory or
other central nervous system (CNS) effects has led many

Fig. 10. Mean number of digits recalled at intervals before and
after diazepam and placebo treatments. Zero was the time of
drug administration. A different random 15-digit number was
presented each time. The score represents the mean of three
trials. From Ghoneim et al.95; used with permission.

Table 7. Experimental Design for State-dependent Memory

Drug State during Learning

Drug State during Recall

Drug Placebo

Drug D-D group D-P group
Placebo P-D group P-P group

D � drug; P � placebo.
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to assume that blood concentrations are synonymous or
linearly related to drug effects, which may not be true. If
a continuous or repeatable discrete measure of a drug
effect can be obtained with concurrent measurement of
drug blood concentrations, it is possible to develop phar-
macokinetic–pharmacodynamic (PK-PD) modeling con-
cepts to characterize relevant parameters that quantify
drug effects.135 There are several advantages for studying
PK-PD relations136,137: (1) It allows more complete un-
derstanding of the determinants of drug action, includ-
ing phenomena such as distributional delay of effect,
formation of active metabolites, and short-term toler-
ance. (2) It quantitates the effects of the drug on the
brain by calculating values for parameters such as
Cp50AMN and Cp50SED, which represent the plasma drug
concentrations required to produce one half of maximal
amnesia and sedation.138 As valid measures of intrinsic
drug potency and brain sensitivity within an individual,
those parameters allow exploration of the psychotropic
differences between drugs and explanations of effects of
factors such as aging and drug–drug and drug–disease
interactions on the drugs’ actions. (3) The information
would make it possible to design optimal infusion
schemes for drugs during conscious sedation and anes-
thesia or during investigations of their behavioral effects.
(4) It provides a rationale for monitoring drug plasma
concentrations as indicators of clinical efficacy or toxic-
ity and use for medicolegal purposes.

Several steps are involved in studying the PK-PD rela-
tion and evaluating drug action: (1) Pharmacokinetics
describe and predict the time course of concentrations
in body fluids, usually blood (fig. 11). Arterial blood
sampling allows for the calculation of accurate data dur-
ing drug distribution and the rate of blood–brain equil-
ibration.139 It is the preferred site because most of the
studies in the literature evaluate the effects of single
bolus doses or relatively short infusions and are per-

formed during the distribution/redistribution phase. The
issue of plasma protein binding is also of impor-
tance140,141 because the unbound (free) drug in plasma
is presumed to represent the drug fraction that is avail-
able for transport across the blood–brain barrier. (2)
Pharmacodynamics describes the time course and in-
tensity of drug effects (fig. 11). This is the difficult step
and is the reason for the deficiency of adequate studies
of the pharmacokinetic–amnesic relation for drugs. The
behavioral tests must be short, amenable to frequent
repetitions, and sensitive to low drug doses and concen-
trations. The brevity of the tests reduces subjects’ fa-
tigue, and the test sensitivity allows determination of
memory function over a wide range of drug concentra-
tions. We developed in our laboratory the use of a
15-digit number serial learning task, repeated over three
trials for such studies.95 The task is sensitive, short (ap-
proximately 3.5 min), and can be administered as fre-
quently as desired to correspond to changing drug con-
centrations. The task may also be administered several
times before the actual study to reduce improvement in
performance over time. There is virtually no limit to the
numbers that can be generated by a computer, unlike
words or pictorial lists. To compensate for any residual
practice effects, one may use a placebo correction.
Changes over baseline scores after administration of ac-
tive medication are corrected by subtraction of scores at
corresponding times after placebo administration. (3)
PK-PD modeling describes the relation between the
dose (concentration) and its effects. Data should be
obtained from repeated and simultaneous sampling over a
wide range of drug concentrations. A mathematical model
is developed that fits the data and allows inference of the
effect site concentrations based on plasma concentrations.
Various PK-PD models may be used.135–137,142 The most
appealing is the sigmoid Emax model, because of its similar-
ity to the receptor binding model. Interpretation of the
concentration–effect relation can be complicated by the
lack of a temporal relation between the two variables,
so-called hysteresis. Two types of cognition–blood drug
concentration curves may be found (fig. 11). The drug
effect may decrease with time for the same drug concen-
tration, described as clockwise hysteresis as shown by the
arrows in figure 11. This may be caused by tolerance (short-
or long-term), progressive learning of the task, and the
presence of active antagonistic metabolites.143,144 It is not
possible to separate tolerance from learning without a
placebo control. The formation of active antagonistic me-
tabolites is rare, but there are a few examples of metabo-
lites that alter the dynamics of the parent drug by modify-
ing its kinetics, e.g., 5-hydroxy-pentobarbital.144 The
presence of clockwise hysteresis has some important prac-
tical applications. Medicolegally, blood concentrations may
not adequately predict impairments from these drugs.

Fig. 11. Definitions of pharmacokinetics and pharmacodynam-
ics and types of hysteresis.
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Another type of drug concentration–effect curve can
demonstrate anticlockwise hysteresis. The effect of the
drug increases with time for a given drug concentration,
which, when taken sequentially, produces a direction
that is counterclockwise. A common cause is the delay
for a drug to be transported from the systemic circula-
tion (sampling site) to its site of action and then to elicit
a measurable response. This type of hysteresis may be
missed because of infrequent early sampling and assay of
the drug in venous rather than arterial blood.139,142 An-
other cause is the production of active metabolites from
the parent drug. These would have maximum concen-
trations and a combined peak activity at some later time
compared with the parent drug concentration.145 Other
uncommon causes are delayed drug action, drugs work-
ing through a cascade reaction, and short-term sensitiza-
tion or up-regulation of receptors.

The applicability of mathematical models to describe
the pharmacodynamic response becomes questionable
when hysteresis occurs. The hysteresis must be col-
lapsed or removed. One frequently used approach as-
sumes an effect compartment146 to correlate memory
changes with changes in the blood concentrations of
drug. It can be thought of as the kinetically defined
biophase of the CNS actions of the drug. The drug effect
is directly related to its concentration at the receptor
site. A link model142 describes the transfer between the
plasma and effect compartments. The equilibration delay
between the compartments is characterized by the rate
constant ke0 with units of reciprocal time, which gov-
erns the transfer of drug.

Specificity of Memory Effects

All of the drugs currently available for human use that
are capable of producing amnesia also cause sedation.
There is no drug that only affects memory. For theoret-
ical and clinical reasons, it is important to separate the
effects on memory systems from impairments in atten-
tion, arousal, or mood. It is also important when inves-
tigating potential memory-enhancing drugs to separate
effects on alertness, attention, and fatigue from genuine
effects on learning and memory. The general consensus
is that drug-induced amnesia is independent of sedation.
Table 8 summarizes the approaches that have been used
to dissociate the effects on memory and sedation. One
method is to study two or more drugs that produce the
same effects on sedation but different effects on mem-
ory. For example, Green et al.147 compared chlorprom-
azine with lorazepam in doses that produced equal de-
grees of sedation but found that memory was impaired
only by lorazepam. Curran et al.148 compared the effects
of diphenhydramine with those of scopolamine and
lorazepam. In the doses used, the three drugs produced
similar levels of sedation, but the antihistamine did not
impair memory. It should be noted, however, that because
tests of sedation and memory may vary in difficulty, disso-
ciations of this kind do not provide compelling evidence
for independence between the two behaviors.

Another method of demonstrating the specificity of
the memory effects of drugs is to study the rates of
development of tolerance to the actions of the drug.
Overall, the evidence is that tolerance develops to sed-
ative effects much faster than it develops to memory

Table 8. Methods for Dissociating the Effects on Memory and Sedation

Method Typical Findings Examples

Equate effects on sedation and determine
whether two or more drugs have differential
effects on memory

Different drugs produce same sedative effects
but different effects on memory.

Green et al.147 (1996), Curran et
al.148 (1998)

Assess the development of tolerance to
sedative and memory effects

Tolerance to sedation develops before
tolerance to memory effects.

Ghoneim et al.149 (1981), Lucki
et al.151 (1986), Curran et al.150

(1994), Tata et al.152 (1994)
Assess the degree of reversal of agonist

effects on sedation and memory by
antagonist

Differential reversal depends on ratio of dosage
of agonist to antagonist and their times of
administration.

Curran and Birch153 (1991),
Hommer et al.154 (1993)

Assess the degree of differential
dose–response curves for sedation and
memory

Sedation and memory show different dose–
response curves.

Roache and Griffiths155 (1985),
Rich and Brown156 (1992),
Weingartner et al.157 (1995)

Measure differential effects on early and late
components of the auditory event-related
potential

Early components are affected similarly by
sedatives, whereas later components are
affected more by amnesics.

Curran et al.148 (1998), Veselis et
al.158 (2001)*

Statistical—covariance and more
sophisticated statistical analysis

Covariance of sedation measures leave
significant drug–placebo differences on
memory. Amnesic drugs produce memory
impairment before they cause significant
sedation.

Ghoneim and Mewaldt159 (1990),
Curran160 (1991), Veselis et
al.138 (1997)

From Curran49; modified with permission.

* Also, more recently, Veselis RA, Reinsel RA, Feshchenko AV, Johnson R: Thiopental and propofol effects on memory are dissociable by event related potentials.
Poster presented at the 50th Annual Meeting of the Association of University Anesthesiologists, Milwaukee, Wisconsin, May 1–3, 2003
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effects. For example, tolerance develops to the sedative
effects of diazepam after its 3-week administration to
healthy volunteers but not to its amnesic effects.149 Tol-
erance develops to the memory effects of alprazolam after
8 weeks of treatment in patients150 and at least 6 months
after treatment with other benzodiazepines.151,152 An alter-
native way of dissociating the two effects would be to
show differential reversal of amnesic and sedative effects
by an antagonist. Use of small doses of flumazenil153 or
pretreatment with flumazenil before administration of a
benzodiazepine154 results in reduction of sedative effects
without relief of memory impairment. A fourth method of
dissociation is through demonstration of different dose–
response curves for sedation and amnesia.155–157 Using the
auditory event-related potential with different groups of
drugs that produced equivalent sedative but differing am-
nesic effects, Curran et al.148 and Veselis et al.158 (also
more recently, Veselis RA, Reinsel RA, Feshchenko AV,
Johnson R: Thiopental and propofol effects on memory are
dissociable by event related potentials. Poster presented at
the 50th Annual Meeting of the Association of University
Anesthesiologists, Milwaukee, Wisconsin, May 1–3, 2003)
reported that early components of the event-related poten-
tial were affected similarly by sedatives, whereas later com-
ponents were affected more by amnesics. Statistical meth-
ods are also important for showing this dissociation.
Analysis of covariance can be used to separate effects at-
tributable to sedation. However, covariance assumes a lin-
ear relation between variate and covariate, and the relation
between memory and sedation maybe more complex than
that.159,160 More recently, Veselis et al.138 used several
statistical scaling procedures, normalization of drug con-
centration levels, and arbitrary standards of memory and
sedation to compare memory performance after equiseda-

tive doses of four drugs (midazolam, propofol, thiopental,
and fentanyl). These drugs exhibited very different seda-
tion and amnesia relations for the same criteria of felt
sedation and objective memory impairment. For example,
propofol at low serum concentrations showed a high like-
lihood of exceeding the criterion of memory impairment
well before it met the criterion of sedation. In contrast,
fentanyl exceeded the sedation criteria and showed low
probability of amnesia for the same concentration range
(fig. 12). Finally, Eger’s group has demonstrated chemical
compounds that suppress learning without causing seda-
tion in animals161–163 and shown that the two functions
need not be inseparable.

Brain Imaging

Introduction
Functional neuroimaging opens a window to view the

brain at work. It provides a unique in vivo opportunity
to study the neurobiology of human memory and its
functional and neural architecture. It is also a rapidly
developing, highly interdisciplinary and complex tech-
nical field, requiring multidisciplinary teams of scientists
(in physics, radiologic science, mathematics, statistics,
computer programming, engineering, cognitive neuro-
science, and medicine).164 Brain imaging has been used
relatively recently to investigate several areas of mem-
ory, including the nature and function of components of
the memory systems and regional cerebral blood flow
changes associated with performance of memory tasks
under the influence of drugs.165–169 Many new insights
have been gained, and these in turn promise a deeper
understanding of the foundations of memory.

Fig. 12. Probability of amnesia being
present as a function of normalized se-
rum concentration using a logistic re-
gression (LR) model. Amnesia is defined
as recognition of fewer than half of the
words presented. Confidence intervals
for Cp50AMN are given as horizontal bold
lines for each drug. The vertical line at
x � 5 represents the Cp50SED. From Ve-
selis et al.138; modified with permission.
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Principles
The two major techniques are positron emission to-

mography (PET) and functional magnetic resonance im-
aging (fMRI). Both measure neuronal activity by assess-
ing changes in local cerebral blood flow. For the PET
method, a radioactive tracer is injected immediately be-
fore the start of a cognitive task. The radiotracer accu-
mulates in the brain in direct proportion to the local
blood flow. For the most widely used fMRI method,
called BOLD (blood oxygen level dependent), images are
generated through changes in blood oxygenation that
accompany neuronal activity without the need for a
radioactive tracer. When neural activity increases, local
blood flow and oxygen consumption increase, but the
former increases more than the latter, resulting in a local
increase in the amount of oxygenated blood and a net
decrease in deoxyhemoglobin. Deoxyhemoglobin is
paramagnetic, resulting in local magnetic field changes
that provide the imaging contrast.170

Research Design
At least two issues need to be considered when plan-

ning neuroimaging studies, as discussed here.
Control of Other Mental Activities during the

Scanning Period. If the researcher wants to construct,
for example, an episodic memory retrieval task in which
the subject recalls orally during scanning the words of a
list learned earlier, changes in blood flow should be the
result of memory retrieval and not due to other mental
activities. A common strategy is to use a paired image
subtraction design. In addition to the scan during the
word list recall, another scan is taken during a control
condition that shares the same mental operations except
for those of explicit retrieval. For example, we asked the
subjects in our laboratory171 to repeatedly count “1, 2, 3,
. . .” aloud at a rate of approximately 1 number/s, which
is expected to match the rate of verbal output during the
memory test. This repetitious rehearsal in short-term
memory of a vastly over-learned and automatized se-
quence should minimize episodic memory retrieval. Sub-
tracting the blood flow maps during the control state,
which accounts for speech activity, from those during
the activation state would identify the regions that are
involved in the desired memory task. This subtraction
method has been criticized. There is no guarantee that
the performance in the experimental task will differ
from the control state in only one way. Also, the addition
of the extra processing component per se in the exper-
imental task may affect processes common to the exper-
imental and control tasks. If so, it would not be possible
to subtract them out.172 Nonetheless, the majority of
results from studies of memory have been generated by
this method, and robust and reliable patterns of activa-
tion have been demonstrated.173

Some researchers also use a resting state as a baseline.
Subjects lie quietly without specific instructions regard-

ing mental activities. Critics argue that the variability in
the mental state during such a condition is such that it
may not serve a useful purpose.164 In our laboratory, we
ask the subjects immediately after the period to describe
what they had been thinking to discern differences in
mental states between subjects in the experimental and
control groups.174

Control of Stimulus Presentations Relative to the
Scanning Sequence. The characteristics of the stimu-
lus, its mode of delivery, its timing, and its timing and
duration in relation to the scanning periods must be
precisely controlled.175

Image Acquisition
A widely used PET radiotracer is oxygen-15–labeled

water (H2
15O), which has a half-life of approximately 2

min, allowing a series of injections to be performed
every 12–15 min. For each injection, the cognitive task
and scanning are performed during the time that the
labeled blood perfuses the brain. It provides a 40-s win-
dow on brain activity, with a spatial resolution of ap-
proximately 6–10 mm. The advantages of PET include
relatively silent scanning, accessibility of the patient for
monitoring, and the ability to provide quantitative as
well as relative measures of blood flow. The latter is
important in studies with drugs that may affect global
cerebral blood flow, either directly or indirectly, e.g., via
changes in arterial carbon dioxide tension (PaCO2). The
advantages of fMRI compared with PET include the
avoidance of exposure of subjects to ionizing radiation
and improved spatial and temporal resolution. Its limita-
tions are confining the subject inside the scanner, with
its risks of limited monitoring and claustrophobia in
some individuals, acoustic noise, and signal artifact at the
base of the brain.164

Methods with High Temporal Resolution
Both PET and fMRI have high spatial but poor temporal

resolution. Conversely, electroencephalography, event-
related potentials, and magnetoencephalography rapidly
measure the current flows induced by synaptic activity.
Electroencephalography and event-related potentials
quantify electric potentials with electrodes at the scalp.
Magnetoencephalography is a newer technique in
which the magnetic fields associated with current flow
within neurons induce a current in a detection coil on
the scalp. To pick up these small signals, the detection
coils are coupled to a superconductive device within a
magnetically shielded room.164 However, the accurate
localization of neuronal current flows based on data
generated by these methods alone is problematic. Re-
cently, techniques have been developed that use both
hemodynamic and electromagnetic measures to arrive at
estimates of brain activation with high spatial and tem-
poral resolutions. These methods range from simple jux-
taposition to simultaneous integrated techniques.176
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Image Processing and Analysis
Images are reconstructed before statistical analysis.

They are corrected for sources of noise in the signal due
to scanner drift or artifacts, are realigned to correct for
slight head movement, and may undergo spatial smooth-
ing.164 Usually the subject’s functional results are dis-
played on his/her own structural magnetic resonance
imaging scan; otherwise, images are transformed to a
stereotactic coordinate space, based on a common tem-
plate.177 This is done to counteract individual differ-
ences in brain size and gyral anatomy and facilitates
group analyses, as well as the communication of results
across laboratories. Typically, the comparison of blood
flow maps associated with the cognitive task and its
control is performed using a t test, regression, or multi-
variate statistical approaches.178,179

Brief Summary of the Neural Basis of Memory
Tulving et al.180 proposed the hemispheric encoding/

retrieval asymmetry model. According to this model, the
prefrontal regions in the left hemisphere tend to be
differentially activated during episodic encoding and se-
mantic retrieval, whereas the right prefrontal regions
tend to be differentially involved during episodic mem-
ory retrieval (fig. 13). Considerable evidence supports
this model,181 although some critics have argued that
this hemispheric asymmetry seems to depend to some
extent on the type of stimuli used.182,183 The latest
version of the model acknowledges that the right pre-
frontal lateralization of episodic retrieval seems less com-
plete than originally proposed.184 A second general ob-
servation of the neuroimaging literature is that prefrontal
regions seem to interact with posterior brain regions
during memory encoding and retrieval.173 Episodic en-
coding usually involves activation of the left prefrontal,
left temporal, and anterior cingulate regions. The left
hippocampus is usually involved with verbal material,
and the right hippocampus is involved with nonverbal
materials.185–187 There are two functional neuroimaging
studies that demonstrate that activation of the amygdala
at encoding is correlated with later recall of emotional
material.188,189 Episodic retrieval usually activates the
right prefrontal region, the anterior cingulate region, the
cerebellum, and the hippocampus.190,191 Semantic re-
trieval is usually associated with activation of the left

prefrontal, left temporal, and anterior cingulate re-
gions.190,192 For working memory, the central executive
is typically associated with activation of prefrontal re-
gions, the phonologic loop is associated with the parietal
regions (for storage) and the Broca area (for rehearsal),
and the visuospatial sketch pad is associated with the
occipitotemporal, occipitoparietal, inferior prefrontal,
and superior prefrontal regions. Object maintenance
tends to be left lateralized, and spatial maintenance tends
to be to be right lateralized.193,194 Priming is accompa-
nied by reductions in the amount of neural activation
relative to naive or baseline task performance (fig. 14).
Decreased activation bilaterally in occipitotemporal cor-
tical areas is usually associated with perceptual priming,
and the left inferior frontal cortex is usually associated
with conceptual priming.191,195,196 Last, aversive condi-
tioning is associated with activation of the amygda-
la.197,198 Table 9 summarizes these results. It should be
emphasized, however, that there are discrepancies and
uncertainties about precise anatomic localization of var-
ious memory processes. For example, in a review of
verbal working memory by Ivry and Fiez,199 Broca area
activation was found in only 9 of 12 data sets by different
groups of investigators. Neuroimaging is a “noisy” tech-
nique, and results obtained in one study may not be
replicated in a second. Assumptions that the cognitive
tasks used in different studies evaluate the same memory
processes may not be certain, and teasing apart the
different operations involved in complex mental func-
tions is far from easy.

Network Analyses
The standard subtraction approach to analyzing func-

tional neuroimaging data can be used to identify the
brain regions active in certain tasks. However, it does
not indicate the functional interrelations between such
regions and regions that do not show differential activity
but may still be part of the specific functional network.
The network approach complements the subtraction
approach in characterizing the functionally specialized
brain regions and their interactions.200–202 Several pro-
cedures have been used to identify the different brain
regions and how they interact in a given network model.
A commonly used procedure is structural equation
modeling or path analysis.203 Briefly, the following steps

Fig. 13. Hemispheric asymmetrical in-
volvement of left and right prefrontal
cortex during episodic encoding and ep-
isodic retrieval. From Nyberg and Ca-
beza173; used with permission.

1284 MOHAMED M. GHONEIM

Anesthesiology, V 100, No 5, May 2004

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/100/5/1277/354442/0000542-200405000-00033.pdf by guest on 20 M
arch 2024



are involved: (1) Brain regions differentially activated
through subtraction analysis are identified. (2) The re-
gions are linked to each other on the basis of neuroanat-
omy to create an anatomic network model. (3) Regional
cerebral blood flow correlations among the regions are
calculated. (4) Structural equation modeling is applied to
the regional cerebral blood flow correlations among the
regions. The values or weights for the different connec-
tions are calculated.

Conclusions
Functional neuroimaging has been used to investigate

the normal operations of memory with considerable
success. The scope of this work has not been matched
by studies in subjects with drug-induced memory
changes. Future investigations will no doubt define the
neural substrates associated with memory impairment
(or enhancement), differentiate between the substrates

of sedative–hypnotic effects and amnesic effects, and
determine the neuroanatomic signatures of each drug.
Potential or currently accepted therapeutic interven-
tions in pathologic states might also be closely examined
using neuroimaging.

Overview of Memory-impairing Drugs

A wide variety of drugs impair memory. These include
the benzodiazepines, anticholinergic agents, alcohol, an-
esthetics, barbiturates, cannabis derivatives, �-adrener-
gic blockers, and others. The benzodiazepines and the
anticholinergics have been investigated more than the
others. These drugs have a wide diversity of chemical
structures, which vary from the monoatomic xenon and
the biatomic nitrous oxide to the more complex struc-
ture of a benzodiazepine, a barbiturate, or a halogenated

Fig. 14. Positron emission tomography
scans of three vertical slices through the
brain revealed the areas of activation
(whitened) during administration of lists
of words. In the unpracticed or naive sub-
ject (left column), the anterior cingulate
(top row), temporal and frontal lobes
(middle row), and right cerebellum (bot-
tom row) are active, but the practiced
subject performs the task with no activa-
tion of these areas (middle column). In-
troduction of a new list of words reverses
these practice-induced changes (right
column). (The reader should refer to the
original reference for reviewing the col-
ored pictures). From Posner and
Raichle196; used with permission.

Table 9. Brain Regions Activated during Learning and Memory

Memory Operations Typical Activation Patterns

Working memory
Phonologic loop Left frontoopercular (Broca area), premotor and parietal cortex
Sketch pad Ventral (object information) and dorsal (spatial information) visual pathways
Central executive Prefrontal cortex (ventrolateral and middorsal)

Episodic memory
Encoding Left prefrontal and temporal cortex, anterior cingulate, hippocampus*
General retrieval Right prefrontal cortex, anterior cingulate, cerebellum, precuneus, thalamus
Successful retrieval Prefrontal cortex, precuneus, hippocampus*

Semantic memory Left prefrontal and temporal cortex, anterior cingulate
Priming

Perceptual priming Bilateral occipitotemporal cortex†
Conceptual priming Left inferior frontal cortex†

From Nyberg and Cabeza173; modified with permission.

* Hippocampus refers to hippocampus proper as well as nearby cortex. † Decreased activation.

1285DRUGS AND MEMORY

Anesthesiology, V 100, No 5, May 2004

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/100/5/1277/354442/0000542-200405000-00033.pdf by guest on 20 M
arch 2024



volatile anesthetic. Benzodiazepines, barbiturates, and
volatile anesthetics act at the �-aminobutyric acid type A
(GABAA) receptors potentiating chloride currents. Xe-
non, nitrous oxide, and ketamine seem to have their
major effects at the N-methyl-D-aspartate receptors. Cho-
linergic antagonists act at muscarinic receptors. � Block-
ers act at �-adrenergic receptors. Marijuana acts on can-
nabinoid receptors. Drugs such as ethanol act on
receptors for serotonin, acetylcholine, GABA, glutamate,
glycine, and dopamine. Differentiating which receptor is
mediating amnesia, subjective experience (sedation,
hypnosis, anxiolysis), or other behavioral effects is diffi-
cult to assess. However, despite the disparity in molec-
ular structure, selective targets, chemical transmitters,
and specific binding areas in the brain, these diverse
agents seem to produce similar profiles of memory im-
pairment. It seems that there are multiple pathways to
the final effects on memory. This kind of commonality
agrees with the current view that memory is a distrib-
uted property of cortical systems rather than exclusive
to specific areas.204,205 Thus, one brain region may be
part of more than one neural network subserving differ-
ent memory abilities. The general characteristics of drug
impairments are displayed in table 10.

Effects on STM versus LTM and Components of
Working Memory
Drugs, with the exception of general anesthetics,35,206

spare short-term memory (STM) but impair long-term
memory (LTM).49,159 Therefore, sensitive memory tasks
are those that minimize the contribution of STM and
maximize the contribution of LTM, e.g., a test that ex-
amines the delayed retention of a relatively long list of
items. If immediate recall is tested, the position of the
items in the list should be analyzed to exclude those
whose performance relies more on STM.

A gradual increase in a general anesthetic dose pro-
duces a progressive impairment of STM or working
memory until events occurring only 1–2 s before cannot
be remembered.206 Learning ceases before loss of con-
sciousness and STM function. A small further increase in

anesthetic dose is associated with loss of conscious-
ness.207 Few studies have examined the effects of drugs
on components of working memory. Rusted and War-
burton208 used dual-task paradigms to investigate the
effects of scopolamine. The drug produced impairments
of the central executive component, which confirmed
earlier observations with the drug.33 Gorissen and Eh-
ling209 also used dual-task experiments to test the effects
of benzodiazepines. Although dividing attention reduced
memory performance, this manipulation was no more
disruptive in those given diazepam versus those given
placebo. Both groups of investigators agree that reduced
attentional resources due to impairments of the central
executive are not sufficient to explain the effects of the
drugs on memory.210

Effects on Explicit versus Implicit Memory
Drugs act prominently on explicit memory. The effects

on implicit memory have not been studied as extensively
as with explicit memory, and their results have been
conflicting. Most of the studies have investigated the
effects of priming. Some studies showed preservation of
implicit memory through performance on perceptual
tasks such as the word-generation test,67,153,211–215

whereas others found impairment.216–220 There are
some studies on the effects of drugs on procedural learn-
ing as exemplified by motor skill acquisition tasks. The
majority suggest preservation,159 but others do not.61 It
should be remembered that areas of the brain involved
in attention and explicit memory may be needed early in
skill learning and that these areas become less important
as learning proceeds.221,222 Also, a drug effect may be
caused by a general slowing of performance related to
the sedative effect of the drug.67,153,159 In general, it is
possible to conclude that impairment of explicit mem-
ory usually is more pronounced than that of implicit
memory, effortful cognitive processes are much more
impaired than automatic ones, there is usually dimin-
ished contamination of indirect test performance by ex-
plicit memory, and impairments are usually milder in
forced-choice recognition than in yes–no recognition.223

(Subjects in a forced-choice recognition, unlike yes–no
recognition, where they may not respond if they are not
sure, may be guided by the sensation of familiarity and
guessing, which may fall within the domain of implicit
memory.)

Effects on Explicit Memory
Pharmacologic agents act on episodic memory by im-

peding the acquisition of new information (this is de-
scribed by some authors as impairment of encoding or
the related components of storage or consolidation of
the material to be learned or its transfer from STM to
LTM).49,159,224,225 How drugs impair acquisition remains
to be elucidated. The effects on learning can be easily
demonstrated when looking at the shape of the serial

Table 10. General Characteristics of Amnesic Drugs

A wide variety of molecular structures and biochemical pathways
but similar profiles of impairments exist.

The acquisition of new information is impeded, producing
anterograde amnesia.

Retrieval processes are only impaired by anesthetics.
Short-term memory is only impaired by anesthetics.
Episodic but not semantic memory is impaired.
Learning of skills or procedures usually remains intact.
Explicit memory is much more impaired than implicit memory.
The degree of amnesia is related to the dosage, additive effects

of other drugs, and aging.
Tolerance and cross-tolerance to memory impairment are usually

modest.
Amnesia is independent of sedation.
State-dependent effects are controversial.
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position curves of the items being learned.226 One of the
most stable characteristics of human learning is the
skewed serial position function observed in serial list
learning (e.g., learning a 15-digit sequence over three
trials). Under the influence of drugs, the curve becomes
perfectly symmetrical (fig. 15). Drugged subjects are
forced to rely more on STM (which is not usually im-
paired) to aid performance, producing an increase in
recall of the last few items of the list with the reduced
recall from the primary region of the curve, which is
obtained from LTM.226 Sometimes the drug effect may
not be manifested by a decrease in number of items
learned, but a failure to benefit from previous practice.95

Therefore, such a performance decrement would be
missed if subjects were not repeatedly tested (fig. 12). A
performance decrement could also be missed if the sub-
jects are required to attain a specific criterion of learn-
ing, thus equating learning between drugged and un-
drugged subjects. Then, a later recall would be similar
for the two groups.

Drugs reduce learning and memory of information
presented after their administration (anterograde amne-
sia) but do not alter retrieval of previously stored mate-
rial.159 Indeed, some drugs produce retrograde enhance-
ment of recall of material acquired before the drug
intake. The most probable cause for the latter is that
drugged subjects learn so little while under the influence
of the drug that there is less interference and therefore
less forgetting of the material learned before drug admin-
istration.227 Retrieval processes remain intact except
with subanesthetic concentrations of general
anesthetics.35,36,117,228

Semantic Memory
Retrieval of semantic information is generally intact as

to be expected from testing preexperimental memo-
ry.3,159 In the common task that assesses semantic flu-
ency, e.g., “list as many animals as you can in 1 min or as
many words beginning with the letter T in 1 min,”
drugged subjects often provide lower correct responses

compared with a placebo group. However, impairment
of semantic memory can only be inferred with confi-
dence if it can be demonstrated that slowing of perfor-
mance on the task is not due to drowsiness or psy-
chomotor impairment. Better evidence for impairment
of semantic memory is a drug-induced increase in the
number of incorrect responses. For example, Curran and
Morgan229 recently reported that habitual abusers of
ketamine made semantic errors while performing a cat-
egory-generation task (e.g., for the category fruit: or-
anges, juice, vitamins, . . .). Such effects are very un-
common. Remembering and knowing are two subjective
states of awareness associated with memory. Tulving12

proposed that the two states reflect autonoetic and
noetic consciousness that respectively characterize epi-
sodic and semantic memory systems.230 When subjects
are asked to make remember/know judgments indicat-
ing whether they have a specific recollection of the
presentation of a word during the study phase (remem-
ber; recollection-based recognition) or the word seems
familiar (know; familiarity-based recognition), remem-
ber responses are more reduced by drugs as compared
with familiarity.49,231,232

Dose–Effect Functions
Drugs produce dose- and time-related decrements in

episodic memory.95 The impairments are also additive,
e.g., taking a benzodiazepine with alcohol233 or with a
subanesthetic concentration of an inhalation anesthet-
ic.217 The elderly are more sensitive to the behavioral
effects of drugs, including memory. The cause may be
pharmacokinetic (e.g., altered rates of distribution or
elimination) or pharmacodynamic (e.g., changes at the
receptor or transmitter sites). A third cause is a lower
baseline performance of the elderly. Table 11 summa-
rizes the memory changes in healthy older adults.234–237

These changes may make equal cognitive decrements in
the young and the old more noticeable and more serious
in the latter. A modest decline in the cognitive abilities of
a young person may have little or no effect on that

Fig. 15. Relative proportion of errors
across serial position in volunteers
treated with placebo or diazepam before
and after treatment. From Hinrichs et
al.226; used with permission.
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person’s activities. The same loss in an older individual
who is already performing at a lower level or exerting
more effort to maintain comparable behavior may have
serious objective and clinical consequences.238 As with
other CNS-active drugs, tolerance and cross-tolerance to
the effects of the drugs may occur. However, although
marked tolerance to the sedative and attentional effects
of the benzodiazepines occurs with continued adminis-
tration, only minor tolerance to the memory effects
occurs.149–152 The same pattern has been produced in
animals.239,240 There was also no cross-tolerance for
memory impairment between ethanol and benzodiaz-
epines.233 State-dependent drug effects in humans are
controversial. Some studies show state dependen-
cy,79,80,228,241 but the majority show asymmetrical state-
dependent memory effects or equivocal results at
best.117,242

Subjective Assessment of Memory Function, Real-life
Memory, and Memory for Emotional Events
It is not uncommon for subjects’ performance on

memory tasks to vary sharply from their own subjective
evaluations of their behavior. Patients may not notice or
be appropriately concerned about even fairly large im-
pairments in learning and cognitive abilities.226 In the
few studies in which tasks involving “everyday memory”
demands were used, impairment was found.243 It is
expected that amnesia for emotionally significant and
stressful events, such as those related to surgery, acci-
dents, or crimes, would be less than those for standard
presentations of neutral verbal and visual stimuli. Real-
life events maybe subject to a greater encoding elabora-
tion because they are likely to be represented in several
sensory modalities and/or evoke release of stress hor-
mones during and after emotionally arousing events,
which interact with the amygdala complex to modulate
the storage of these events.244 Affective reactions could
also take place in the absence of conscious awareness of
stimuli.245 Some drugs may produce selective impair-
ments of cognitive functions. For example, in a series of
studies by Cahill et al.,246 propranolol impaired subjects’
recall of emotionally arousing but not neutral elements
of a story. Using the same task with two patients who
had bilateral damage to the amygdala, they found a
similar pattern of memory, suggesting that adrenergic
function in the amygdala mediates memory for emo-
tional material.

Distortions of Memory
Daniel Schacter247 recently wrote a fascinating book

about the errors and imperfections of normal memory,
what he called “the seven sins of memory”: transience,
absentmindedness, blocking, misattribution, suggestibil-
ity, bias, and persistence. The effects of drugs on these
normal memory malfunctions have yet to be systemati-
cally explored. A recent study by Mintzer and Griffiths232

found that triazolam, in addition to reducing rates of true
recognition of studied words, reduced rates of false
recognition to nonstudied words. This was consistent
with reports of reduced false-recognition rates in pa-
tients with organic amnesic syndromes.248 It is possible
to conclude that false recognition relies on normal mem-
ory mechanisms that are impaired in drug-induced and
organic amnesias. Some drugs, such as methamphet-
amine, benzodiazepines, and marijuana, also produce an
increase in intrusions, i.e., false recall of words that were
not on the presented lists.249–251 The drugs may impair
formation of new associations between distinct items or
between an item and its context,251 may cause irrelevant
associations from semantic memory,250 or, as in the case
of stimulant drugs, may lead the subjects to adopt a
strategy of little inhibition in their recall, “recalling”
every word that occurs to them. Nondrugged subjects
typically filter their responses, and some correct re-
sponses may be inhibited because of a much stricter
confidence criterion.249

Disease, Drugs, and Memory
Most studies of the behavioral effects of drugs have

been conducted using healthy volunteers, but there may
be some differences in drug actions related to the pa-
thology in patients. Several diseases are associated with
cognitive deficits that may affect the patients’ indepen-
dence and quality of life. Factors that may influence the
level of impairment include the severity of the disease,
age at onset, duration, interaction with the effects of
aging, and adequate therapeutic interventions prevent-
ing and/or controlling further cognitive impairments.
Major depression is associated with memory impair-
ments. Noradrenergic tricyclic antidepressants and sero-
tonergic drugs may be equally effective in treating the
depression, but the improvement of memory perfor-
mance is significantly greater with the latter type of
drugs.252,253 This is consistent with the literature on
serotonergic neurotransmission and memory.254 In epi-
lepsy, declarative memory functions show characteristic
patterns of impairment when mediotemporal and asso-
ciated neocortical structures are affected by lesions, on-
going epileptic activity, or the undesired side effects of
drugs or operative treatment. The “new” antiepileptic
drugs (e.g., oxcarbazepine, vigabatrim) seem to have no
or minor cognitive effects as compared with “older”
drugs (e.g., phenytoin, phenobarbital).255,256

Cognitive dysfunction, particularly memory loss, is

Table 11. Memory Changes Associated with Aging

Memory performance declines with aging. However, not all
aspects of memory are impaired.234

There is diminished encoding and retrieval of episodic memories.
When retrieval is facilitated by the provision of cues at the time
of testing, e.g., recognition tasks, age differences often
disappear.235,236

Implicit memory is relatively less affected.237
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common in schizophrenia.257,258 Optimal pharmaco-
logic treatment may lead to more effective treatment of
the cognitive deficits.258,259 Newer antipsychotic drugs
(e.g., risperidone, olanzapine) ameliorate the cognitive
deficits better than conventional agents (e.g., haloperi-
dol, clozapine).260 Parkinson disease is associated with
subtle but widespread cognitive impairment. Dopami-
nergic agents may enhance cognitive functions in some
patients and impair them in others, according to the
level of dopamine depletion in different parts of the
brain. The cognitive changes may also be task specif-
ic.261–263 Patients with diabetes mellitus may have cog-
nitive deficits including those of memory. Although the
peripheral neuropathy is widely known, involvement of
the CNS is much less recognized in diabetes.264–267 Bent
et al.268 recently compared three groups of subjects,
insulin-dependent diabetics, non–insulin-dependent dia-
betics, and a control group, using a battery of cognitive
tasks including memory tests. The diabetic patients
(combined together) scored at a lower level than the
control group, but most of the impairment occurred in
the non–insulin-dependent diabetics (particularly those
controlled by oral hypoglycemic drugs), perhaps empha-
sizing the need for effective management of the disease
or a deleterious effect of the latter drugs.

Two other endocrine dysfunctions and therapies are
associated with cognitive disturbances. In Cushing syn-
drome, hypersecretion of cortisol is associated with a
high incidence of impairment of memory, hippocampal
atrophy, and depression. Pharmacologic use of glucocor-
ticoids is similarly productive of mood change and mem-
ory deficit. Reduction of glucocorticoid concentrations,
either through discontinuation of steroid treatment or
through use of agents that block glucocorticoid synthe-
sis, ameliorates the adverse behavioral effects.269 Estro-
gens have been used to treat some menopausal symp-
toms such as hot flashes as well as osteoporosis. Studies
suggest some beneficial effects on learning and memory
in postmenopausal women, although clinical trials in
dementias have not been successful.270–272 On the other
hand, the use of luteinizing hormone-releasing hormone
analogs to treat patients with carcinoma of the prostate
has been associated with impaired memory.273

Patients with anxiety disorders may show reductions
in cognitive and psychomotor functions. Adequate ther-
apeutic interventions may cause improvements in per-
formance,274,275 contrary to the effects observed in
healthy subjects given same drugs.276 However, other
investigators found the same effects of drugs in patients
and healthy volunteers, with two exceptions. First, the
anxiolytic effects of drugs were easily perceived by the
patients but have rarely been reported in healthy volun-
teers. This dimension of feeling is probably too stable in
healthy subjects to be affected by these drugs. The sec-
ond difference was the slower rate of learning to per-
form the various behavioral tasks by the patients. This

necessitates longer practice sessions than those used for
healthy volunteers to achieve a stable performance be-
fore drug administration.277,278 The recent discovery of
metabotropic glutamate receptors, which modulate the
function of the glutamatergic system, offers an additional
avenue for development of a new generation of anxio-
lytics free from cognitive side effects.279 Also, the dis-
covery that �2-GABAA receptors mediate anxiolysis,
whereas �1-GABAA receptors mediate sedation and am-
nesia, may fulfill the same promise.280

Sleep difficulties affect approximately one third of
adults. Untreated sleep disturbances are associated with
increased risk for the development of psychiatric disor-
ders (specifically major depression), memory impair-
ment, reduced work performance, increased rate of ac-
cidents, and a compromised quality of life.281,282

Treatment with benzodiazepines may also lead to mem-
ory impairment and residual sleepiness affecting daytime
performance.283 Zaleplon, a novel nonbenzodiazepine
drug, is rapidly eliminated from the body and does not
produce cognitive impairment or residual sedation the
next day.284,285 In addition, it does not produce rebound
effects.286 It is almost unique in these respects.281

Memory Function in the Perianesthetic and
Perisurgical Periods
The gradual loss of STM and LTM memory with an

increase in anesthetic dose until loss of consciousness is
achieved has been described above.206 However, 0.1–
0.2% of patients in general surgical cases (with poten-
tially higher numbers during cardiac, obstetric, and
trauma surgical procedures) may recall intraoperative
memories or experience what is referred to in the anes-
thesia literature as awareness.287 It is mostly caused by
too-light anesthesia, particularly when muscle relaxants
are used. Its most feared sequela is posttraumatic stress
disorder.288 Implicit memory for events during general
anesthesia may occur in a few patients, only some of the
time and particularly after light levels of anesthesia.
Learning may be more perceptual than engaging in elab-
orate processing of information, and it may be more
evident if patients are tested soon after the end of
surgery.289

Memory Impairment during Postoperative Re-
covery. Memory impairment in the early recovery
phase after general anesthesia is common. In a recent
study by Rundshagen et al.,290 53% of the patients did
not recall this period when they were asked 24 h later.
Hence, giving written instructions and information to
escorts of patients returning home on the same day of
surgery is important. The results of memory and cogni-
tive tests usually return to the preoperative values ap-
proximately 1–4 days after surgery.291–293 In addition to
the variable sensitivities of the tests, it is possible that
some patients, even while experiencing severe fatigue or
aftereffects of sedation, may muster sufficient resources
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to perform satisfactorily for short periods.294 Also, indi-
vidual variation in recovery is often masked when results
are expressed in terms of group means.295 There are
anecdotal reports of patients reporting forgetfulness or
inability to concentrate for several days after general
anesthesia. These residual impairments may be due to
the residual effects of the anesthetics or increased met-
abolic demands induced by the endocrine responses to
surgery.296,297 Patients who are admitted to an intensive
care unit may experience memory problems while
there. They frequently have little or no recall of their stay
in the unit and may remember only nightmares, halluci-
nations, or paranoid delusions. Some of the contributing
factors are the illness and treatment with sedative–hyp-
notics that may impair memory as well as the physical
constraints, the social isolation, and the life-threatening
nature of the illness, which may lead to the hallucina-
tions and delusions.298

Transient global amnesia (TGA) has been reported in
few cases after general anesthesia.299,300 Patients with
TGA have sudden onset of severe memory impairment,
including both anterograde and retrograde amnesia,
which lasts 2–12 h. Clinical examination during TGA
shows a relatively isolated amnesic syndrome with an
otherwise normal neurologic examination. TGA gener-
ally occurs in persons aged older than 50 yr and resolves
spontaneously after several hours. After the attacks, pa-
tients remain unable to recall the period of TGA, and
they occasionally exhibit a period of permanent retro-
grade amnesia before the onset of TGA. Kritchevsky et
al.301 studied 11 patients with TGA. During the episode,
the patients had severe anterograde amnesia for verbal
and nonverbal material and retrograde amnesia that typ-
ically covered at least two decades.

Prolonged Postoperative Problems. Psychological
distress may become apparent 2–3 months after surgery
as a result of factors such as slower-than-anticipated
recovery and progression of disease.302 Patients may
report more memory problems during this period,
which may reflect general psychological distress more
than actual deficits in memory performance.302,303 It is
not uncommon for subjective evaluations and objective
measures of memory to show poor association.304 CNS
complications of cardiac surgery have been the subject
of considerable research.305 Cognitive impairment is
common, affecting as many as 80% of patients a few days
after surgery and persisting in one third. Millar et al.306

stress the importance of a patient’s preexisting cognitive
and emotional states, in addition to age and other fac-
tors, for increasing the risk of an adverse outcome.
Pharmacologic neuroprotection may, in the future, offer
an improved outcome.307

Electroconvulsive therapy is effective in the treatment
of patients with depression, bipolar disorders, schizo-
phrenia, and catatonia.308 Adverse effects on memory
are the most common side effects and are the most

distressing to many patients.309 Owing to a combination
of anterograde and retrograde effects, many patients may
manifest persistent loss of memory for some events that
transpired in the interval starting several months before
and extending to several weeks after the electroconvul-
sive course. Some patients experience persistent amne-
sia extending several years before electroconvulsive
treatments. Profound and persistent retrograde amnesia
may be more likely in patients with preexisting neuro-
logic impairment and patients who receive large num-
bers of treatments, using methods that accentuate short-
term cognitive side effects (e.g., sine wave stimulation,
bilateral electrode placement, high electrical stimulus
intensity).310 The deficits in memory are largely re-
stricted to episodic declarative memory and involve con-
solidation and retrieval processes.311

Drugs of Abuse
There is evidence that compulsion to repetitive drug

intake and its persistence are based on a pathologic
usurpation of molecular mechanisms that are normally
involved in learning and memory.312–314 Progress in un-
derstanding these mechanisms may lead to more effec-
tive therapies for addiction than are currently present.
The drugs have detrimental effects on memory and cog-
nition. Although the short-term effects are similar to those
of other drugs,225,229,315,316 studies of their long-term ef-
fects have yielded inconsistent findings.40 Some studies
have found deficits in memory, attention, abstraction, de-
cision making, and visuospatial abilities.317–325 Others
failed to find deficits in some of the same functions, and a
few studies of stimulant abusers (cocaine and amphet-
amine) even suggested improved performance.326–328

Methodologic flaws account for many of these inconsisten-
cies, as explained in the section on design of experiments.
However, the evidence is persuasive that long-term regular
recreational use of some drugs may be associated with
persistent impairment of memory and cognition and may
not be reversed by prolonged abstinence, which is an
important and worrisome concern. Also, the concomitant
use of more than one drug may have additive negative
effects.40,229,318,329–332

Developmental Memory Deficits
Some drugs administered to fetuses and infants may

induce apoptotic neurodegeneration in the developing
brain and persistent learning and memory deficits. The
period of peak brain growth occurs in humans between
the last month of gestation and first 6 months after
birth.333,334 Ethanol; marijuana; phenobarbital; phenyt-
oin; nitrous oxide; a combination of midazolam, nitrous
oxide, and isoflurane; and other drugs that block N-
methyl-D-aspartate receptors or hyperactivate GABAA re-
ceptors may be neurotoxic in young animals.335–338

Other than the effects of alcohol,339 the neurobehavioral
disturbances produced by other drugs must be evaluated
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in humans. Perhaps the technology of brain imaging can
be adapted to infants to study human development.
Subtle changes in learning and memory in the absence of
dysmorphogenic effects may be easily overlooked.334

Significant brain development also occurs during adoles-
cence.340 Changes in cerebral blood flow and metabolic
rate are associated with increases in myelinization and
decreases in gray matter, which reflect maturation and
remodeling of the brain.341,342 Effects of drugs during
this period may be due to direct neurotoxicity or indi-
rect hormonal changes. Wilson et al.343 found significant
effects correlating the age of first use of marijuana to
brain morphology. Subjects who started using marijuana
early (before the age of 17 yr) had a smaller percent of
cortical gray matter and increased white matter com-
pared with subjects who started later. Animal data also
showed greater histologic changes in peripubertal ani-
mals versus young adults exposed to cannabinoids.344

Effects of Drugs in a Hyperbaric Environment
Nitrogen narcosis (euphoria and cognitive and motor

dysfunctions) may be precipitated when compressed air
is breathed by a scuba diver. Narcosis may occur at
depths of 66 ft of water (3 atm) or greater and signifi-
cantly increase the risks of the underwater environ-
ment.345 Depth results in a significant impairment of
memory, which contributes to the dangers of diving.346

Drugs taken by some divers to combat nausea and vom-
iting, e.g., scopolamine and dimenhydrinate, may add to
the cognitive impairments of diving.347 It is sound advice
that people avoid all drugs, particularly psychoactive
drugs, before diving.

Drugs and Neuroanatomy of Memory
Two main areas of the brain that play important roles

in pathologic dysfunctions of memory, the medial tem-
poral lobes and frontal lobes, have been recognized.
Damage to each one of these areas produces its charac-
teristic profile of memory deficits. The medial temporal
lobe memory system refers to the hippocampal forma-
tion together with the adjacent perirhinal and parahip-
pocampal cortices.348 It is necessary for establishing
long-term explicit or declarative memory, which can be
assessed by tests of recall and recognition. The frontal
lobes are essential for STM or working memory and
when accurate memory depends on organization,
search, selection, and verification in the retrieval of
stored information. Damage to the frontal cortex does
not typically involve recollection per se unless some
organizational component is needed to facilitate perfor-
mance.349 Frontal lobe–sensitive tests include the Wis-
consin Card Sorting Test, the Stroop test, tests for con-
fabulation,350 word fluency tests, and tests for source
memory.351 Generally, the effects of drugs on memory
result from functional disruption of the medial temporal

lobe system. Frontal lobe involvement may be restricted
to a few drugs, such as ketamine.63

Memory-enhancing Drugs

As the world population ages, the incidence and prev-
alence of various dementias (Alzheimer disease, multi-
infarct dementia, senile dementia, and others) will in-
crease in the absence of effective treatments for allevi-
ating symptoms and preventing progression of these
ailments. Successful drugs should have a great impact on
individuals, their families, and society. A cure for estab-
lished symptomatic disease may not be feasible because
of the apparent irreversibility of cerebral lesions, but
prevention and slowing or arresting the progress of the
disease are reasonable goals. This highlights the impor-
tance of current attempts to define the criteria for as-
sessment of memory associated with mild cognitive im-
pairment,352 a stage of cognitive dysfunction beyond
normal aging (people who are more forgetful than they
ought to be for their age and education) but of insuffi-
cient magnitude to qualify for the diagnosis of clinically
probable Alzheimer disease. Several studies have shown
that subjects diagnosed as having mild cognitive impair-
ment progress to Alzheimer disease at a much higher
rate than age-matched controls.353 This stage of cogni-
tive impairment is becoming an important target for
potential therapeutic intervention and has recently been
approved by the U.S. Food and Drug Administration for
clinical treatments.

Cholinesterase inhibitors (e.g., donepezil, rivastigmine,
galantamine) are the first line of treatment of Alzheimer
disease and the only drugs of proven benefit.354,355 The
rationale for their use is based on evidence in patients
with Alzheimer disease of deficits in the enzymes respon-
sible for synthesis of acetylcholine in postmortem stud-
ies,356 loss of cholinergic projection neurons in other
autopsies,357 and declines of cerebral acetylcholinester-
ase activity in imaging studies in vivo.358 Unfortunately,
the effects of cholinesterase inhibitors are modest, and
the disease eventually progresses despite treatment.
There is some preliminary evidence that antioxidant
therapy, specifically with vitamin E or selegiline, may
delay the time to clinical worsening of the disease. The
strategy is based on evidence for increased oxidative
stress and free radical injury in the Alzheimer diseased
brain.354,355 Despite the publications of some epidemio-
logic studies that suggest associations between the use
of antiinflammatory drugs (nonsteroidal antiinflamma-
tory agents and prednisone) or estrogen with a lower
incidence of Alzheimer disease, clinical trials have not
shown any beneficial effects.270,271,359,360

The amyloid hypothesis of Alzheimer disease holds
that cerebral deposition of insoluble �-amyloid peptide
is critical for the pathogenesis of the disease.361 Agents
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that interfere with �-amyloid production or aggregation
are therefore being developed. Such drugs theoretically
could reduce �-amyloid burden and may confer protec-
tion against the development of the disease.355,360 The
fate of the �-amyloid protein is determined by the ac-
tions of secretases that cleave it into different fragments.
Several researchers demonstrated that immunization
with amyloid peptide in transgenic mice prevented cog-
nitive dysfunction.362–364 These significant advances in
knowledge about the disease at the molecular level re-
main to be translated into effective therapies in humans.
Other new strategies include the use of glutamatergic
agonists and serotonergic antagonists based on the hy-
pothesis that synaptic transmission at cortical neurons
represents a balance between cholinergic, glutamater-
gic, and serotonergic influences. New findings indicate
that treatment with lipid-lowering drugs may also be
associated with a reduced risk for the disease.365–368

Novel drugs are also being developed based on the
molecular changes that occur at memory-related syn-
apses. Encoding involves activation of �-amino-3-hyroxy-
5-methyl-4 isoxazole propionic acid (AMPA)–type gluta-
mate receptors, which then depolarize the postsynaptic
region and unblock N-methyl-D-aspartate–type glutamate
receptors.369 Consolidation involves new protein syn-
thesis. The CREB (cAMP–response element binding pro-
teins, which switch on and off the genes needed to form
LTM) family of transcription factors are important for the
gene signaling.370 Biotechnology companies are intro-
ducing compounds that modulate the AMPA com-
pounds, with preliminary encouraging results.353 If
these new pharmacologic agents and others prove to be
devoid of serious adverse effects, they may also be used
for treatment of the normal decline of memory produced
by aging. Pardridge371 recently drew attention to the fact
that the majority of newly developed drugs do not cross
the blood–brain barrier. If progress with development of
new drugs for the brain is to keep pace with progress in
the molecular neurosciences, drug-delivery strategies
based on endogenous blood–brain barrier transport sys-
tems must be explored.

Conclusions

Memory is a critical mental function. The history of
drug effects on memory is as old as the history of its
systematic study. There are three aims for studying the
psychopharmacology of memory: evaluating drugs, mod-
eling memory deficits in pathologic disorders, and con-
tributing to a comprehensive account of memory.

Memory tests should be theoretically driven rather
than components of a fixed battery of neuropsychologic
tests. A memory experiment usually has three stages: a
study phase, a retention interval, and a test phase. We
propose a battery of tests that may include tests for

working memory, episodic LTM, semantic LTM, and im-
plicit memory. We favor free recall and recognition tests
for episodic memory and a priming task for implicit
memory. The contents of the battery can be changed to
fit the aims of a specific investigation. It is important
when investigating memory-impairing drugs to separate
the effects on memory from impairments in attention,
arousal, or mood. It is also important to separate the
effects on memory from enhancement of alertness and
attention, and decreased fatigue when investigating
memory-enhancing drugs. The accepted standard for the
design of an experiment is the randomized, prospective,
concurrent assignments of subjects to the drug and pla-
cebo groups under double-blind conditions. Two com-
parison groups are usually necessary: pretreatment and
posttreatment, and experimental and control groups. In
the study of drug abusers, measurement of premorbid
cognitive function, inclusion of a control group, and use
of a large sample size are necessary.

Two major techniques, PET and fMRI, are used for
functional neuroimaging. However, an explosion of new
methods that promise to improve temporal and spatial
resolutions and allow studies of the brain from infancy to
old age are on the horizon. It is possible to identify the
neural networks serving each memory function by com-
bining the anatomic model and interregional correla-
tions. A fundamental change from localizing memories in
specific areas to viewing memory as distributed cortical
networks that support specific mnemonic processes is
rapidly evolving.

A wide variety of drugs impair memory. The amnesia is
independent of sedation. In general, drugs produce a
similar profile of memory impairment. They impair ac-
quisition. With the exception of general anesthetics,
they do not impair STM. They produce anterograde but
not retrograde amnesia. Retrieval processes remain in-
tact except with subanesthetic concentrations of general
anesthetics. Drugs usually do not impair semantic mem-
ory, automatic processes, or learning of skills and pro-
cedures. Impairment of implicit memory is less than that
of explicit memory. Amnesia for emotionally significant
and stressful events is also less than that for neutral
stimuli. Amnesia is dose and time related. Impairments
are additive with those produced by other drugs, and the
elderly are more impaired. Tolerance and cross-tolerance
may be less for memory than for the other behavioral
effects. Much remains to be investigated. For example,
the specific encoding operations that are involved in
drug impairments must be elucidated. Dose–response
curves for drugs acting at different receptors and
through different neurotransmitters or on different
forms of memory may provide valuable insight into this
vital behavior. Factors that contribute to altered sensitiv-
ity to drug effects are largely unknown. The question of
possible irreversibility of memory and cognitive prob-
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lems associated with long-term abuse of some drugs
must be answered.

Development of memory-enhancing drugs is of great
concern to a progressively aging population. Attempts to
diagnose mild cognitive impairment before progression
to an established disease are also equally important.
Several new strategies for drug development seem to be
promising. These include the use of glutamatergic ago-
nists, serotonergic antagonists, and new pharmacologic
agents of exquisite selectivity involved in the molecular
changes that occur at the memory-related synapses. De-
velopment of strategies for breaching the blood–brain
barrier will ensure the delivery of these drugs to their
desired sites. All of these developments promise rapid
advances in the therapeutics of memory and are impor-
tant contributions to its understanding.

This review would not have been possible without the contributions of the
author’s past and present collaborators. The author is deeply grateful for their
thoughts, efforts, and intellectual companionship.
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