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Attenuation of Mitochondrial Respiration by Sevoflurane in
Isolated Cardiac Mitochondria Is Mediated in Part by
Reactive Oxygen Species
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Background: Anesthetic preconditioning protects against car-
diac ischemia/reperfusion injury. Increases in reduced nicotin-
amide adenine dinucleotide and reactive oxygen species during
sevoflurane exposure suggest attenuated mitochondrial elec-
tron transport as a trigger of anesthetic preconditioning. The
authors investigated the effects of sevoflurane on respiration in
isolated cardiac mitochondria.

Methods: Mitochondria were isolated from fresh guinea pig
hearts, and mitochondrial oxygen consumption was measured
in the presence of complex I (pyruvate) or complex II (succi-
nate) substrates. The mitochondria were exposed to 0, 0.13,
0.39, 1.3, or 3.9 mM sevoflurane. State 3 respiration was deter-
mined after adenosine diphosphate addition. The reactive oxy-
gen species scavengers manganese(III) tetrakis (4-benzoic acid)
porphyrin chloride and N-tert-Butyl-a-(2-sulfophenyl)nitrone
sodium (10 �M each), or the KATP channel blockers gliben-
clamide (2 �M) or 5-hydroxydecanoate (300 �M), were given
alone or before 1.3 mM sevoflurane.

Results: Sevoflurane attenuated respiration for both complex
I and complex II substrates, depending on the dose. Gliben-
clamide and 5-hydroxydecanoate had no effect on this attenu-
ation. Both scavengers, however, abolished the sevoflurane-
induced attenuation for complex I substrates, but not for
complex II substrates.

Conclusion: The findings suggest that sevoflurane-induced
attenuation of complex I is mediated by reactive oxygen spe-
cies, whereas attenuation of other respiratory complexes is
mediated by a different mechanism. The opening of mitochon-
drial KATP channels by sevoflurane does not seem to be involved
in this effect. Thus, reactive oxygen species formation may not
only result from attenuated electron transport by sevoflurane,

but it may also contribute to complex I attenuation, possibly
leading to a positive feedback and amplification of sevoflurane-
induced reactive oxygen species formation in triggering anes-
thetic preconditioning.

ANESTHETIC preconditioning (APC) is the phenomenon
whereby temporary exposure to a volatile anesthetic,
followed by its complete washout, attenuates cardiac
ischemia/reperfusion injury via a memory effect.1–3 The
exact signaling cascade from anesthetic exposure to at-
tenuated ischemia/reperfusion injury, however, is not
yet fully understood. Reversal of APC by scavengers of
reactive oxygen species (ROS)4–7 implicates the forma-
tion of ROS as part of the triggering mechanism of APC.
We previously reported an increase in reduced nicotin-
amide adenine dinucleotide (NADH)8 and ROS fluores-
cence7 during preconditioning by sevoflurane in intact
hearts. These findings suggest a central role for the
temporary alteration of mitochondrial function in trig-
gering APC. Reversible attenuation of mitochondrial
electron transport by volatile anesthetics could cause
increased formation of ROS at complex I and/or com-
plex III of the electron transport chain (ETC).9 ROS
could then act on downstream effectors, like tyrosine
kinase or protein kinase C cascades,1,10,11 and mitochon-
drial (m) adenosine-triphosphate (ATP) sensitive K�

channels12 that are normally closed at physiologic ATP
levels. It is still unclear how and where ROS are formed
during the anesthetic exposure. It is also unclear if al-
tered ETC function is a direct effect of sevoflurane or if
it is mediated by mKATP channel opening13,14 or by ROS,
because various ROS have been shown to affect electron
transport.15–18

In the present study, we used intact cardiac mitochon-
dria to investigate the effects of sevoflurane on mito-
chondrial respiration. Substrates for complex I or com-
plex II of the ETC were given to help elucidate possible
sites of altered ETC function. We further used different
ROS scavengers and mKATP channel blockers to test if
ROS formation or mKATP channel opening by sevoflu-
rane mediate altered ETC function.

Materials and Methods

All investigations conformed to the Guide for the Care
and Use of Laboratory Animals (National Institutes of
Health No. 85–23, revised 1996), and were approved by
the Institutional Animal Care and Use Committee (Med-

* Research Fellow, Anesthesiology Research Laboratories, Department of An-
esthesiology, Medical College of Wisconsin, and Resident on Leave, Westfälische-
Wilhelms-Universität, Münster, Germany. † Associate Professor, � Research As-
sociate, Department of Pharmacology and Toxicology, Medical College of
Wisconsin. ‡ Research Fellow, § Assistant Professor, Anesthesiology Research
Laboratories, Department of Anesthesiology, Medical College of Wisconsin.
# Professor, Anesthesiology Research Laboratories, Departments of Anesthesiol-
ogy and Physiology, Cardiovascular Research Center, Medical College of Wiscon-
sin and Veterans Affairs Medical Center Research Service, and Adjunct Professor,
Department of Biomedical Engineering, Marquette University, Milwaukee,
Wisconsin.

Received from the Anesthesiology Research Laboratories, Departments of
Anesthesiology, Physiology, and Pharmacology and Toxicology, Cardiovascular
Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; the
Milwaukee Regional Medical Center, Milwaukee, Wisconsin; and the Veterans
Affairs Medical Center Research Service, Milwaukee, Wisconsin. Received for
publication August 28, 2003. Accepted for publication November 17, 2003.
Supported in part by grants HL58691 (to Dr. Stowe) and ES06648 (to Dr. Eells)
from the National Institutes of Health, Bethesda, Maryland; by grants 0355608Z
(to Dr. Stowe) and 0151487Z (to Dr. Eells) from the American Heart Association,
Dallas, Texas; and by grant Ri 1132/1–1 from the German Research Foundation,
Bonn, Germany (to Dr. Riess). Portions of this work were presented at the
Symposium on Anesthetic Preconditioning at the 16th Annual Meeting of the
American Society of Anesthesiologists, San Francisco, California, October 11–15,
2003.

Address reprint requests to Dr. Stowe: Anesthesiology Research Laboratories,
Departments of Anesthesiology and Physiology, Medical College of Wisconsin,
8701 Watertown Plank Road, Milwaukee, WI 53226. Address electronic mail to:
dfstowe@mcw.edu. Individual article reprints may be purchased through the
Journal Web site, www.anesthesiology.org.

Anesthesiology, V 100, No 3, Mar 2004 498

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/100/3/498/354415/0000542-200403000-00007.pdf by guest on 20 M
arch 2024



ical College of Wisconsin, Milwaukee, Wisconsin).
Thirty mg of ketamine and 1,000 U of heparin were
injected intraperitoneally into 20 albino English shorthai-
red guinea pigs (weight, 250–300 g). The animals were
decapitated 15 min later when unresponsive to noxious
stimulation. Immediately after a thoracotomy, the heart
was taken out and immersed in a 4°C cold isolation
buffer of 200 mM mannitol, 50 mM sucrose, 5 mM

KH2PO4, 1 mM EGTA, 5 mM 3-(n-morpholino)propanesul-
fonic acid, and 0.1% bovine serum albumin (pH 7.15,
adjusted with potassium hydroxide). The atria were dis-
carded, and the ventricles were minced into 1-mm
pieces. The tissue was rinsed, transferred to a glass
Potter-Elvehjem homogenizing vessel (Kontes Glass Co.,
Vineland, NJ) on ice, and gently homogenized with a
Teflon (DuPont, Wilmington, DE) pestle for 30 s in the
presence of 1 mg/ml protease. This was followed by
another 30 s of homogenization after 10-fold dilution of
the protease. The mitochondria were then isolated by
differential centrifugation at 4°C.19 The tissue suspen-
sion was centrifuged at 8,000g for 10 min to remove the
protease. The resulting pellet was then resuspended in
28 ml isolation buffer, and the suspension centrifuged at
700g for 10 min to remove cellular debris. The superna-
tant containing the mitochondrial fraction was further
centrifuged at 8,000g for 10 min. The pellet was resus-
pended in 7 ml isolation buffer without EGTA and cen-
trifuged at 8,000g for 10 min. The final mitochondrial
pellet was resuspended in 500 �l cold isolation buffer
without EGTA. The total protein concentration was de-
termined20 with bovine serum albumin as a standard.
Anatomic integrity of the isolated mitochondria was ver-
ified by electron microscopy.

Measurement of Mitochondrial Oxygen
Consumption
The 500-�l mitochondrial suspension was kept at 4°C.

Immediately before each experiment, an aliquot of the
concentrated mitochondria was added to 27°C respira-
tion buffer21 (110 mM KCl, 5 mM K2HPO4 · 3 H2O, 10 mM

3-[n-morpholino]propanesulfonic acid, 10 mM Mg-ace-
tate, 1 mM EDTA, 1 �M tetrasodium pyrophosphate,
0.1% BSA; pH 7.15, adjusted with potassium hydroxide)
to yield 500 �l with a concentration of 500 �g protein/
ml. Mitochondria from one heart were sufficient for
approximately 15 experiments. Mitochondrial oxygen
concentration was measured polargraphically with a
Clark-type oxygen electrode (Model 1302; Strathkelvin
Instruments, Glasgow, Scotland) in a water-jacketed
500-�l chamber (Model MT200A; Strathkelvin Instru-
ments), equipped with a Teflon-coated magnetic stirring
bar and monitored by an oxygen meter (Model 782;
Strathkelvin Instruments). The oxygen electrode was
calibrated with air-saturated water (PO2 � 150 mmHg)
and sodium sulfite (Na2SO3) solution (Sigma, St. Louis,
MO; to achieve near zero PO2) at the same temperature

as the buffer to be used. The rate of state 3 mitochondrial
respiration was determined as the maximum rate of
oxygen decrease after addition of substrate and ade-
nosine-diphosphate,21 as shown in figures 1 and 2. Data
were stored on-line using the manufacturer’s software
(Strathkelvin Instruments). Microsoft Excel software (Mi-
crosoft Corp., Redmond, WA) was later used for analysis.

Experimental Protocol
After sealing the chamber with a Plexiglas plug (time,

t � 0 min), drugs, substrates, and adenosine-diphosphate
(5 �l each) were subsequently injected into the chamber
according to the protocol displayed in figure 1 (all of the
following concentrations are final). The superoxide dis-
mutase mimetic manganese(III) tetrakis (4-benzoic acid)
porphyrin chloride (TBAP; OxisResearch, Portland, OR;
10 �M),22 the negatively-charged spin trap N-tert-Butyl-a-
(2-sulfophenyl)nitrone sodium (SPBN; Sigma; 10 �M),23

the mKATP channel blocker 5-hydroxydecanoic acid (5-
HD; Sigma; 300 �M), the nonspecific KATP channel
blocker glibenclamide (Sigma; 2 �M),24 or their respec-
tive vehicle (buffer) was added at t � 1 min to test for
possible antagonism of a sevoflurane-induced effect on
mitochondrial ETC. Pyruvate with malate (Sigma; 10 mM

each dissolved in buffer) or succinate (Sigma; 10 mM

dissolved in buffer) with the complex I blocker rotenone
(Sigma; 10 �M dissolved in dimethyl sulfoxide) was
added at t � 2 min as a substrate for complex I or
complex II of the ETC, respectively. Sevoflurane (Abbott
Laboratories, North Chicago, IL; 0.13, 0.39, 1.3, or
3.9 mM) or its vehicle dimethyl sulfoxide was added at
t � 3 min to test for a sevoflurane-induced alteration of
mitochondrial respiration. Adenosine-diphosphate (Sig-
ma; 250 �M) in buffer was added at t � 4 min to start
state 3 respiration. In some experiments, 2,4-dinitrophe-
nol (Sigma; 100 �M in dimethyl sulfoxide) as an uncou-
pler, or antimycin A (Sigma; 100 �M in dimethyl sulfox-
ide) as a blocker of complex III, were given at t � 3 min
to verify mitochondrial function using the chosen pro-
tocol (fig. 2A). Chamber oxygen concentration in �M
was monitored for up to 12 min or until the oxygen
concentration was 0. Representative tracings of 1.3 mM

sevoflurane and sevoflurane plus TBAP are displayed in
figure 2B. All experiments were performed at 27°C.
Experiments with mitochondria from the same animal
were randomized to one of the above treatment groups
with at least three control experiments interspersed. All
state 3 respiration rates from experiments of one heart
were normalized and expressed as a percentage of con-
trol experiments from the same heart.

Statistical Analysis
All data were expressed as mean � standard error of

the mean. Group data were compared by analysis of
variance to determine significance (Super ANOVA 1.11
software for Macintosh; Abacus Concepts, Berkeley,
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CA). If F values (P � 0.05) were significant, post hoc
comparisons of means tests (Student-Newman-Keuls)
were used to compare the groups. Differences among
means were considered statistically significant when P �
0.05 (two-tailed). Regression analysis was used to deter-
mine the relationships between sevoflurane concentra-
tion and the change in state 3 respiration for both sub-
strate combinations. Statistical symbols used were * (vs.
Con) and † (vs. 1.3 mM sevoflurane).

Results

Sevoflurane attenuated state 3 respiration in a dose-
dependent manner when compared to vehicle controls
for both substrate combinations (fig. 3). Regression anal-
ysis showed exponential relationships between sevoflu-

rane concentration and attenuation of state 3 respiration:
y � 77.0 � 2.7 � (10.8 � 5.2 · log x) for pyruvate with
malate (R2 � 0.11; P � 0.05), and y � 86.2 � 1.2 �
(15.7 � 2.0 · log x) for succinate with rotenone (R2 �
0.67; P � 0.05), with y being the percentage of state 3
respiration compared to control experiments and x be-
ing the sevoflurane concentration.

Neither the ROS scavengers TBAP or SPBN (fig. 4), nor
the putative KATP channel blockers glibenclamide or
5-HD (fig. 5), had an effect on state 3 respiration when
given alone. Both TBAP and SPBN abolished the attenu-
ation of state 3 respiration by 1.3 mM sevoflurane when
pyruvate with malate was given (fig. 4A). This attenua-
tion of state 3 respiration was not observed when suc-
cinate with rotenone was given (fig. 4B). Neither gliben-
clamide nor 5-HD reversed the sevoflurane-induced

Fig. 1. Experimental protocol used to
measure mitochondrial state 3 respira-
tion. After stabilization of the mitochon-
drial suspension for 1 min, one of several
putative antagonists (manganese[III] tet-
rakis [4-benzoic acid] porphyrin chloride
[TBAP; 10 �M], N-tert-Butyl-a-[2-sulfophe-
nyl]nitrone sodium [SPBN; 10 �M], gliben-
clamide [Glib; 2 �M], 5-hydroxydecanoate
[5-HD; 300 �M]), or their respective vehi-
cle was injected into the chamber. Sub-
strate (Subst; 10 mM pyruvate with malate
for complex I, or 10 mM succinate for
complex II, with 10 �M rotenone to block
complex I) was given 1 min later. Sevoflu-
rane (Sev; 0.13, 0.39, 1.3, or 3.9 mM) or its
vehicle dimethyl sulfoxide (DMSO) was
added 1 min later. After another min,
adenosine diphosphate (ADP; 250 �M)
was injected to initiate state 3 respiration.
Each drug and substrate was given as a
5-�l bolus to yield final concentrations.
Oxygen concentration in �M was moni-
tored for up to 12 min or until 0. All
experiments were performed at 27°C.
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attenuation of mitochondrial respiration for either sub-
strate combination (fig. 5).

Discussion

The present study shows that (1) sevoflurane exposure
causes a dose-dependent attenuation of mitochondrial
state 3 respiration in isolated intact mitochondria; (2) the
attenuated electron transport is not limited to complex I;
(3) the results with 5-HD and glibenclamide as KATP

channel antagonists suggest that this effect is indepen-
dent of mKATP channel opening; and (4) the reversal by
the ROS scavengers TBAP and SPBN for complex I sub-
strate (pyruvate with malate), but not for complex II
substrate (succinate with rotenone), suggests that atten-
uated electron transport at complex I, but not at other
sites, is mediated by superoxide.

Usually, cardioprotection by APC in different models is
assessed by a reduction in infarct size2–6,8,11,25–28 and
improved return of mechanical or metabolic func-
tion8,28,29 after ischemia/reperfusion injury compared to
nonpreconditioned hearts. Reversal of this cardioprotec-
tion by antagonists of suspected signaling pathways or
receptors is used to identify some of the mechanisms
involved.2,5,25–27,30

Another approach is to measure expected intracellular
changes during the preconditioning stimulus, i.e., expo-
sure to the volatile anesthetic, in the presence or ab-
sence of known antagonists of APC to identify those
cellular or subcellular effects of the anesthetic exposure
that are relevant for triggering APC. For example, in
addition to increased ROS fluorescence,7 we recently
showed that temporary exposure to a preconditioning

Fig. 2. Representative oxygen recordings
when vehicle (Con; A and B), the com-
plex III inhibitor antimycin A (100 �M;
A), the uncoupler 2,4-dinitrophenol
(DNP; 100 �M; A), or sevoflurane (Sev;
1.3 mM; B) were added at t � 3 min. A
substrate of 10 mM succinate with 10 �M

rotenone (S/R) was given at t � 2 min.
The reactive oxygen species scavenger
manganese(III) tetrakis (4-benzoic acid)
porphyrin chloride (TBAP; 10 �M; B) was
given at t � 1 min. Note the differences in
state 3 respiration (slope of straight
lines) after addition of 250 �M adenosine
diphosphate (ADP) at t � 4 min.
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concentration of sevoflurane caused a reversible in-
crease in NADH fluorescence in intact hearts, and that
this was reversed by 5-HD.28

Without the on-line NADH measurement, our findings
would have confirmed the findings of other studies that
volatile anesthetics such as sevoflurane induce precon-
ditioning by opening mKATP channels. The observed
increase in NADH fluorescence during the anesthetic
exposure, however, suggested attenuation of mitochon-
drial respiration, i.e., a more reduced mitochondrial
state,31 rather than a more oxidized state as expected
with mKATP channel opening.12,32,33 Furthermore, the
paradoxic reversal of this NADH increase by 5-HD casts
some doubt on the specificity of 5-HD as a mKATP chan-
nel blocker. Hanley et al., using submitochondrial prep-
arations, suggested that 5-HD, a fatty acid, could serve as
a substrate to feed electrons into the ETC at the level of
coenzyme Q.34,35 This could provide a bypass for ETC
sites that are attenuated by lipophilic drugs,36 like the
KATP channel openers diazoxide and pinacidil13,34 or
volatile anesthetics.35

Taken together, these findings offer not only the pos-
sibility that volatile anesthetics may attenuate ETC func-
tion to induce APC, but also that blockade by 5-HD does
not necessarily furnish direct evidence of a mKATP chan-
nel opening.37,38 This has already been acknowledged in
the more recent literature.14,39,40 Moreover, there is an
ongoing debate about whether volatile anesthetics open
mKATP channels under physiologic conditions (no short-
age of substrate, oxygen, or adenosine-diphosphate to
make enough ATP) and this opening triggers APC,14 or
whether they open mKATP channels faster and to a
greater extent under nonphysiologic conditions, like
ischemia, and mKATP channels hence serve as an effector
of APC.12,41

Increasing evidence implies that ROS play a central

role in triggering cardiac APC. Not only was APC abol-
ished when different ROS scavengers were given,4–7 but
exposure to a preconditioning concentration of a vola-
tile anesthetic also led to a measurable, albeit temporary,
increase in ROS formation as assessed by ethidium-fluo-
rescence.7,14 This transient increase in ROS during anes-
thetic exposure could subsequently lead to protein ki-
nase C activation11 and mKATP channel opening,42 and
thus result in a memory effect that lasts beyond the
discontinued anesthetic exposure.

How and where ROS are formed during anesthetic
exposure remains unclear. As a consequence of opening
of mKATP channels, increased mitochondrial electron
transport32 could result in increased constitutive forma-
tion of superoxide and thus lead to preconditioning.43

This would implicate mKATP channel opening as a trig-
ger of preconditioning. Attenuated electron transport,
on the other hand, can also increase ROS formation.44–46

The present study clearly demonstrates a dose-depen-
dent attenuation of mitochondrial respiration during an-
esthetic exposure in isolated cardiac mitochondria un-
der state 3 conditions. Together with our previous
reports of an increase in reduced NADH fluorescence8,28

and a decrease in oxidized flavoprotein fluorescence47

during anesthetic exposure in intact beating hearts, we
suggest that anesthetic-induced attenuation of electron
transport is the likely mechanism for ROS formation.

Mitochondrial swelling, as would be expected with K�

influx during KATP channel opening, might also indi-
rectly attenuate ETC function.13 We chose the two
chemically different KATP channel blockers gliben-
clamide and 5-HD at otherwise effective concentrations
(2 �M and 300 �M, respectively)24,29 to test this hypoth-
esis. Both failed to prevent the sevoflurane-induced at-
tenuation of ETC function, suggesting that mKATP chan-
nel opening does not initiate this effect.

Fig. 3. Concentration-dependent attenua-
tion of state 3 mitochondrial respiration
by 0.13, 0.39, 1.3, and 3.9 mM sevoflurane
as a percentage of vehicle control when
substrates for complex I (10 mM pyruvate
with 10 mM malate) or for complex II (10
mM succinate with 10 �M rotenone) were
given. Regression analysis showed expo-
nential relationships (lines) between the
sevoflurane concentration as indepen-
dent variable (x), and the percentage of
state 3 respiration as a dependent vari-
able (y) for both substrate groups: y �
77.0 � 2.7 � (10.8 � 5.2 · log x) for pyru-
vate with malate (R2 � 0.11; P < 0.05) and
y � 86.2 � 1.2 � (15.7 � 2.0 · log x) for
succinate with rotenone (R2 � 0.67; P <
0.05). The arrow indicates the concentra-
tion used for experiments with potential
antagonists. All values are mean � SEM,
n � 8 per experimental group. * P < 0.05
versus Con.
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Altered ETC function may not only result in increased
ROS generation but may also be caused by ROS.15–18

Previous studies on ROS in triggering APC4–7,14 did not
examine a possible mediating role of ROS in altering ETC
function during anesthetic exposure. We used two dif-
ferent ROS scavengers to test this possibility: TBAP as a
mimetic of superoxide dismutase (O2� 3 H2O2) and
SPBN as a free-radical spin-trap. Our findings in isolated
cardiac mitochondria show a differential role for ROS in
sevoflurane-induced ETC attenuation. When succinate
(in the presence of rotenone) was used as the substrate
to feed electrons to oxygen via complexes II, III, and IV
of the ETC, none of the ROS scavengers affected the
sevoflurane-induced attenuation of state 3 respiration.
When pyruvate with malate was used as the substrate to
produce mainly NADH feeding electrons to oxygen via

complexes I, III, and IV of the ETC, both scavengers
abolished the sevoflurane-induced attenuation of state 3
respiration. Taken together with our preliminary find-
ings48 that scavenging ROS abolished the increase in
NADH fluorescence during anesthetic exposure in intact
beating hearts, we suggest that complex I function is
attenuated by superoxide formed during sevoflurane ex-
posure, whereas the effect of sevoflurane on other com-
plexes is apparently not mediated by superoxide. This
also offers the interesting possibility of a positive feed-
back mechanism of ROS likely formed at complex III9 to
attenuate complex I function, and thus leading to more
ROS formation.

In summary, the present results indicate that sevoflu-
rane attenuates mitochondrial electron transport in iso-
lated cardiac mitochondria. This effect appears to be

Fig. 4. Effects of the two different reactive
oxygen species scavengers mangane-
se(III) tetrakis (4-benzoic acid) porphy-
rin chloride (TBAP; 10 �M) and N-tert-
Butyl-a-(2-sulfophenyl)nitrone sodium
(SPBN; 10 �M) on the attenuation of state
3 mitochondrial respiration by 1.3 mM

sevoflurane (sev) when substrates for
complex I (10 mM pyruvate with 10 mM

malate; A) or for complex II (10 mM suc-
cinate with 10 �M rotenone; B) were
given. Note the substrate-dependent dif-
ferences. All values are mean � SEM, n �
8 per experimental group. * P < 0.05 ver-
sus Con. † P < 0.05 versus sevoflurane
(two-tailed).
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partially mediated by ROS, but independent of mKATP

channel opening. Understanding altered mitochondrial
function as a trigger for cardiac preconditioning by vol-
atile anesthetics may provide an important component
in deciphering the complexity of preconditioning as a
means to attenuate ischemia/reperfusion injury.
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